glm

Module: glm

Functions

selectinf.glm.bootstrap_cov(sampler, boot_target, cross_terms=(), nsample=2000)[source]

m out of n bootstrap

returns estimates of covariance matrices: boot_target with itself, and the blocks of (boot_target, boot_other) for other in cross_terms

selectinf.glm.glm_nonparametric_bootstrap(m, n)[source]

The m out of n bootstrap.

selectinf.glm.glm_parametric_covariance(glm_loss, solve_args={'min_its': 50, 'tol': 1e-10})[source]

A constructor for parametric covariance

selectinf.glm.pairs_bootstrap_glm(glm_loss, active, beta_full=None, inactive=None, scaling=1.0, solve_args={'min_its': 50, 'tol': 1e-10})[source]

Construct a non-parametric bootstrap sampler that samples the estimates (\(ar{eta}_E^*\)) of a generalized linear model (GLM) restricted to active as well as, optionally, the inactive coordinates of the score of the GLM evaluated at the estimates (:math:`

abla ell(ar{eta}_E)[-E]`) where

\(ar{eta}_E\) is padded with zeros where necessary.

Parameters

glm_loss : regreg.smooth.glm.glm

The loss of the generalized linear model.

activenp.bool

Boolean indexing array

beta_fullnp.float (optional)

Solution to the restricted problem, zero except where active is nonzero.

inactivenp.bool (optional)

Boolean indexing array

scalingfloat

Scaling to keep entries of roughly constant order. Active entries are multiplied by sqrt(scaling) inactive ones are divided by sqrt(scaling).

solve_argsdict

Arguments passed to solver of restricted problem (restricted_estimator) if beta_full is None.

Returns

bootstrap_sampler : callable

A callable object that takes a sample of indices and returns the corresponding bootstrap sample.

selectinf.glm.pairs_bootstrap_score(glm_loss, active, beta_active=None, solve_args={'min_its': 50, 'tol': 1e-10})[source]

Construct a non-parametric bootstrap sampler that samples the score (:math:`

abla ell(ar{eta}_E)) ofa generalized

linear model (GLM) restricted to active as well as, optionally, the inactive coordinates of the score of the GLM evaluated at the estimates (`

abla ell(ar{eta}_E)[-E]:math:`) where

`ar{eta}_E$ is padded with zeros where necessary.

Parameters

glm_loss : regreg.smooth.glm.glm

The loss of the generalized linear model.

activenp.bool

Boolean indexing array

beta_activenp.float (optional)

Solution to the restricted problem.

solve_argsdict

Arguments passed to solver of restricted problem (restricted_estimator) if beta_full is None.

Returns

bootstrap_sampler : callable

A callable object that takes a sample of indices and returns the corresponding bootstrap sample.

selectinf.glm.pairs_inactive_score_glm(glm_loss, active, beta_active, scaling=1.0, inactive=None, solve_args={'min_its': 50, 'tol': 1e-10})[source]

Construct a non-parametric bootstrap sampler that samples the inactive coordinates of the score of the GLM evaluated at the estimates (:math:`

abla ell(ar{eta}_E)[-E]`) where

\(ar{eta}_E\) is padded with zeros where necessary.

Parameters

glm_loss : regreg.smooth.glm.glm

The loss of the generalized linear model.

activenp.bool

Boolean indexing array

beta_activenp.float (optional)

Solution to the restricted problem.

scalingfloat

Scaling to keep entries of roughly constant order. Active entries are multiplied by sqrt(scaling) inactive ones are divided by sqrt(scaling).

inactivenp.bool (optional)

Which coordinates to return. If None, defaults to ~active.

solve_argsdict

Arguments passed to solver of restricted problem (restricted_estimator) if beta_full is None.

Returns

bootstrap_sampler : callable

A callable object that takes a sample of indices and returns the corresponding bootstrap sample.

selectinf.glm.parametric_cov(glm_loss, target_with_linear_func, cross_terms=(), dispersion=None, solve_args={'min_its': 50, 'tol': 1e-10})[source]
selectinf.glm.resid_bootstrap(gaussian_loss, active, inactive=None, scaling=1.0)[source]
selectinf.glm.set_alpha_matrix(glm_loss, active, beta_full=None, inactive=None, scaling=1.0, solve_args={'min_its': 50, 'tol': 1e-10})[source]

DESCRIBE WHAT THIS DOES

Parameters

glm_loss : regreg.smooth.glm.glm

The loss of the generalized linear model.

active : np.bool

Boolean indexing array

beta_full : np.float (optional)

Solution to the restricted problem, zero except where active is nonzero.

inactive : np.bool (optional)

Boolean indexing array

scaling : float

Scaling to keep entries of roughly constant order. Active entries are multiplied by sqrt(scaling) inactive ones are divided by sqrt(scaling).

solve_args : dict

Arguments passed to solver of restricted problem (restricted_estimator) if beta_full is None.

Returns

selectinf.glm.standard_split_ci(glm_loss, X, y, active, leftout_indices, alpha=0.1)[source]

Data plitting confidence intervals via bootstrap.