algorithms.debiased_lasso¶
Module: algorithms.debiased_lasso
¶
Functions¶
-
selectinf.algorithms.debiased_lasso.
debiased_lasso_inference
(lasso_obj, variables, delta)[source]¶ Debiased estimate is .. math:
\hat{eta}^d = \hat{eta} - \hat{ heta}
- abla ell(hat{eta})
where \(\ell\) is the Gaussian loss and \(\hat{ heta}\) is an approximation of the inverse Hessian at \(\hat{eta}\). The term on the right is expressible in terms of the inactive gradient as well as the fixed active subgradient. The left hand term is expressible in terms of \(ar{eta}\) the “relaxed” solution and the fixed active subgradient. We need a covariance for \((ar{eta}_M, G_{-M})\). Parameters ———- lasso_obj : selection.algorithms.lasso.lasso
A lasso object after calling fit() method.
- variablesseq
Which variables should we produce p-values / intervals for?
- deltafloat
Feasibility parameter for estimating row of inverse of Sigma.
-
selectinf.algorithms.debiased_lasso.
debiasing_matrix
(X, rows, bound=None, linesearch=True, scaling_factor=1.5, max_active=None, max_try=10, warn_kkt=False, max_iter=50, kkt_stop=True, parameter_stop=True, objective_stop=True, kkt_tol=0.0001, parameter_tol=0.0001, objective_tol=0.0001)[source]¶ Find a row of debiasing matrix using line search of Javanmard and Montanari.
-
selectinf.algorithms.debiased_lasso.
pseudoinverse_debiasing_matrix
(X, rows, tol=1e-09)[source]¶ Find a row of debiasing matrix using algorithm of Boot and Niedderling from https://arxiv.org/pdf/1703.03282.pdf