Source code for nipy.io.files

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
""" The io.files module provides basic functions for working with file-based
images in nipy.

* load : load an image from a file
* save : save an image to a file

Examples
--------
See documentation for load and save functions for worked examples.
"""
from __future__ import absolute_import

import os

import numpy as np

import nibabel as nib
from nibabel.spatialimages import HeaderDataError

from ..core.image.image import is_image

from .nifti_ref import (nipy2nifti, nifti2nipy)
from .nibcompat import get_dataobj, get_affine, get_header

from ..externals.six import string_types

[docs]def load(filename): """Load an image from the given filename. Parameters ---------- filename : string Should resolve to a complete filename path. Returns ------- image : An `Image` object If successful, a new `Image` object is returned. See Also -------- save_image : function for saving images Image : image object Examples -------- >>> from nipy.io.api import load_image >>> from nipy.testing import anatfile >>> img = load_image(anatfile) >>> img.shape (33, 41, 25) """ if filename.endswith('.mnc'): raise ValueError("Sorry, we can't get the MINC axis names right yet") img = nib.load(filename) # Deal with older nibabel ni_img = nib.Nifti1Image(get_dataobj(img), get_affine(img), get_header(img)) return nifti2nipy(ni_img)
[docs]def save(img, filename, dtype_from='data'): """Write the image to a file. Parameters ---------- img : An `Image` object filename : string Should be a valid filename. dtype_from : {'data', 'header'} or dtype specifier, optional Method of setting dtype to save data to disk. Value of 'data' (default), means use data dtype to save. 'header' means use data dtype specified in header, if available, otherwise use data dtype. Can also be any valid specifier for a numpy dtype, e.g. 'i4', ``np.float32``. Not every format supports every dtype, so some values of this parameter or data dtypes will raise errors. Returns ------- image : An `Image` object Possibly modified by saving. See Also -------- load_image : function for loading images Image : image object Examples -------- Make a temporary directory to store files >>> import os >>> from tempfile import mkdtemp >>> tmpdir = mkdtemp() Make some some files and save them >>> import numpy as np >>> from nipy.core.api import Image, AffineTransform >>> from nipy.io.api import save_image >>> data = np.zeros((91,109,91), dtype=np.uint8) >>> cmap = AffineTransform('kji', 'zxy', np.eye(4)) >>> img = Image(data, cmap) >>> fname1 = os.path.join(tmpdir, 'img1.nii.gz') >>> saved_img1 = save_image(img, fname1) >>> saved_img1.shape (91, 109, 91) >>> fname2 = os.path.join(tmpdir, 'img2.img.gz') >>> saved_img2 = save_image(img, fname2) >>> saved_img2.shape (91, 109, 91) >>> fname = 'test.mnc' >>> saved_image3 = save_image(img, fname) Traceback (most recent call last): ... ValueError: Sorry, we cannot yet save as format "minc" Finally, we clear up our temporary files: >>> import shutil >>> shutil.rmtree(tmpdir) Notes ----- Filetype is determined by the file extension in 'filename'. Currently the following filetypes are supported: * Nifti single file : ['.nii', '.nii.gz'] * Nifti file pair : ['.hdr', '.hdr.gz'] * SPM Analyze : ['.img', '.img.gz'] """ # Try and get nifti dt_from_is_str = isinstance(dtype_from, string_types) if dt_from_is_str and dtype_from == 'header': # All done io_dtype = None elif dt_from_is_str and dtype_from == 'data': io_dtype = img.get_data().dtype else: io_dtype = np.dtype(dtype_from) # make new image ni_img = nipy2nifti(img, data_dtype = io_dtype) ftype = _type_from_filename(filename) if ftype.startswith('nifti1'): ni_img.to_filename(filename) elif ftype == 'analyze': try: ana_img = nib.Spm2AnalyzeImage.from_image(ni_img) except HeaderDataError: raise HeaderDataError('SPM analyze does not support datatype %s' % ni_img.get_data_dtype()) ana_img.to_filename(filename) else: raise ValueError('Sorry, we cannot yet save as format "%s"' % ftype) return img
def _type_from_filename(filename): ''' Return image type determined from filename Filetype is determined by the file extension in 'filename'. Currently the following filetypes are supported: * Nifti single file : ['.nii', '.nii.gz'] * Nifti file pair : ['.hdr', '.hdr.gz'] * Analyze file pair : ['.img', '.img.gz'] >>> _type_from_filename('test.nii') 'nifti1single' >>> _type_from_filename('test') 'nifti1single' >>> _type_from_filename('test.hdr') 'nifti1pair' >>> _type_from_filename('test.hdr.gz') 'nifti1pair' >>> _type_from_filename('test.img.gz') 'analyze' >>> _type_from_filename('test.mnc') 'minc' ''' if filename.endswith('.gz'): filename = filename[:-3] elif filename.endswith('.bz2'): filename = filename[:-4] _, ext = os.path.splitext(filename) if ext in ('', '.nii'): return 'nifti1single' if ext == '.hdr': return 'nifti1pair' if ext == '.img': return 'analyze' if ext == '.mnc': return 'minc' raise ValueError('Strange file extension "%s"' % ext)
[docs]def as_image(image_input): ''' Load image from filename or pass through image instance Parameters ---------- image_input : str or Image instance image or string filename of image. If a string, load image and return. If an image, pass through without modification Returns ------- img : Image or Image-like instance Input object if `image_input` seemed to be an image, loaded Image object if `image_input` was a string. Raises ------ TypeError : if neither string nor image-like passed Examples -------- >>> from nipy.testing import anatfile >>> from nipy.io.api import load_image >>> img = as_image(anatfile) >>> img2 = as_image(img) >>> img2 is img True ''' if is_image(image_input): return image_input if isinstance(image_input, string_types): return load(image_input) raise TypeError('Expecting an image-like object or filename string')