io.files¶
Module: io.files
¶
The io.files module provides basic functions for working with file-based images in nipy.
load : load an image from a file
save : save an image to a file
Examples¶
See documentation for load and save functions for worked examples.
Functions¶
-
nipy.io.files.
as_image
(image_input)[source]¶ Load image from filename or pass through image instance
- Parameters
image_input : str or Image instance
image or string filename of image. If a string, load image and return. If an image, pass through without modification
- Returns
img : Image or Image-like instance
Input object if image_input seemed to be an image, loaded Image object if image_input was a string.
- Raises
TypeError : if neither string nor image-like passed
Examples
>>> from nipy.testing import anatfile >>> from nipy.io.api import load_image >>> img = as_image(anatfile) >>> img2 = as_image(img) >>> img2 is img True
-
nipy.io.files.
load
(filename)[source]¶ Load an image from the given filename.
- Parameters
filename : string
Should resolve to a complete filename path.
- Returns
image : An Image object
If successful, a new Image object is returned.
See also
save_image
function for saving images
Image
image object
Examples
>>> from nipy.io.api import load_image >>> from nipy.testing import anatfile >>> img = load_image(anatfile) >>> img.shape (33, 41, 25)
-
nipy.io.files.
save
(img, filename, dtype_from='data')[source]¶ Write the image to a file.
- Parameters
img : An Image object
filename : string
Should be a valid filename.
dtype_from : {‘data’, ‘header’} or dtype specifier, optional
Method of setting dtype to save data to disk. Value of ‘data’ (default), means use data dtype to save. ‘header’ means use data dtype specified in header, if available, otherwise use data dtype. Can also be any valid specifier for a numpy dtype, e.g. ‘i4’,
np.float32
. Not every format supports every dtype, so some values of this parameter or data dtypes will raise errors.- Returns
image : An Image object
Possibly modified by saving.
See also
load_image
function for loading images
Image
image object
Notes
Filetype is determined by the file extension in ‘filename’. Currently the following filetypes are supported:
Nifti single file : [‘.nii’, ‘.nii.gz’]
Nifti file pair : [‘.hdr’, ‘.hdr.gz’]
SPM Analyze : [‘.img’, ‘.img.gz’]
Examples
Make a temporary directory to store files
>>> import os >>> from tempfile import mkdtemp >>> tmpdir = mkdtemp()
Make some some files and save them
>>> import numpy as np >>> from nipy.core.api import Image, AffineTransform >>> from nipy.io.api import save_image >>> data = np.zeros((91,109,91), dtype=np.uint8) >>> cmap = AffineTransform('kji', 'zxy', np.eye(4)) >>> img = Image(data, cmap) >>> fname1 = os.path.join(tmpdir, 'img1.nii.gz') >>> saved_img1 = save_image(img, fname1) >>> saved_img1.shape (91, 109, 91) >>> fname2 = os.path.join(tmpdir, 'img2.img.gz') >>> saved_img2 = save_image(img, fname2) >>> saved_img2.shape (91, 109, 91) >>> fname = 'test.mnc' >>> saved_image3 = save_image(img, fname) Traceback (most recent call last): ... ValueError: Sorry, we cannot yet save as format "minc"
Finally, we clear up our temporary files:
>>> import shutil >>> shutil.rmtree(tmpdir)