labs.spatial_models.bsa_io¶
Module: labs.spatial_models.bsa_io
¶
This module is the interface to the bayesian_structural_analysis (bsa) module It handles the images provided as input and produces result images.
-
nipy.labs.spatial_models.bsa_io.
make_bsa_image
(mask_images, stat_images, threshold=3.0, smin=0, sigma=5.0, prevalence_threshold=0, prevalence_pval=0.5, write_dir=None, algorithm='density', contrast_id='default')[source]¶ Main function for performing bsa on a set of images. It creates the some output images in the given directory
- Parameters
mask_images: list of str,
image paths that yield mask images, one for each subject
stat_images: list of str,
image paths of the activation images, one for each subject
threshold: float, optional,
threshold used to ignore all the image data that is below
smin: float, optional,
minimal size (in voxels) of the extracted blobs smaller blobs are merged into larger ones
sigma: float, optional,
variance of the spatial model, i.e. cross-subject uncertainty
prevalence_threshold: float, optional
threshold on the representativity measure
prevalence_pval: float, optional,
p-value of the representativity test:
test = p(representativity>prevalence_threshold) > prevalence_pval
write_dir: string, optional,
if not None, output directory
method: {‘density’, ‘co-occurrence’}, optional,
Inference method used in the landmark definition
contrast_id: string, optional,
identifier of the contrast
- Returns
landmarks: nipy.labs.spatial_models.structural_bfls.landmark_regions
instance that describes the structures found at the group level None is returned if nothing has been found significant at the group level
hrois : list of nipy.labs.spatial_models.hroi.Nroi instances,
(one per subject), describe the individual counterpart of landmarks