Source code for selectinf.learning.fitters

import uuid, functools

import numpy as np
from scipy.stats import norm as ndist
from sklearn import ensemble

[docs]def gbm_fit_sk(T, Y, **params): fitfns = [] for j in range(Y.shape[1]): y = Y[:,j].astype(np.int) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(T, y) def fit_fn(clf, t): return clf.predict_proba(t)[:,1] fitfns.append(functools.partial(fit_fn, clf)) return fitfns
[docs]def random_forest_fit_sk(T, Y, **params): fitfns = [] for j in range(Y.shape[1]): y = Y[:,j].astype(np.int) clf = ensemble.RandomForestClassifier(**params) clf.fit(T, y) def fit_fn(clf, t): return clf.predict_proba(t)[:,1] fitfns.append(functools.partial(fit_fn, clf)) return fitfns