Source code for nipy.labs.viz_tools.activation_maps

#!/usr/bin/env python

"""
Functions to do automatic visualization of activation-like maps.

For 2D-only visualization, only matplotlib is required.
For 3D visualization, Mayavi, version 3.0 or greater, is required.

For a demo, see the 'demo_plot_map' function.

"""
from __future__ import absolute_import

# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD

# Standard library imports
import warnings
import numbers

# Standard scientific libraries imports (more specific imports are
# delayed, so that the part module can be used without them).
import numpy as np

from nipy.utils.skip_test import skip_if_running_nose
from nipy.utils import is_numlike

# Import pylab
try:
    import pylab as pl
except ImportError:
    skip_if_running_nose('Could not import matplotlib')

from .anat_cache import mni_sform, mni_sform_inv, _AnatCache
from .coord_tools import (coord_transform,
                          find_maxsep_cut_coords
                          )

from .slicers import SLICERS, _xyz_order
from .edge_detect import _fast_abs_percentile

################################################################################
# Helper functions for 2D plotting of activation maps
################################################################################


[docs]def plot_map(map, affine, cut_coords=None, anat=None, anat_affine=None, slicer='ortho', figure=None, axes=None, title=None, threshold=None, annotate=True, draw_cross=True, do3d=False, threshold_3d=None, view_3d=(38.5, 70.5, 300, (-2.7, -12, 9.1)), black_bg=False, **imshow_kwargs): """ Plot three cuts of a given activation map (Frontal, Axial, and Lateral) Parameters ---------- map : 3D ndarray The activation map, as a 3D image. affine : 4x4 ndarray The affine matrix going from image voxel space to MNI space. cut_coords: None, int, or a tuple of floats The MNI coordinates of the point where the cut is performed, in MNI coordinates and order. If slicer is 'ortho', this should be a 3-tuple: (x, y, z) For slicer == 'x', 'y', or 'z', then these are the coordinates of each cut in the corresponding direction. If None or an int is given, then a maximally separated sequence ( with exactly cut_coords elements if cut_coords is not None) of cut coordinates along the slicer axis is computed automatically anat : 3D ndarray or False, optional The anatomical image to be used as a background. If None, the MNI152 T1 1mm template is used. If False, no anat is displayed. anat_affine : 4x4 ndarray, optional The affine matrix going from the anatomical image voxel space to MNI space. This parameter is not used when the default anatomical is used, but it is compulsory when using an explicite anatomical image. slicer: {'ortho', 'x', 'y', 'z'} Choose the direction of the cuts. With 'ortho' three cuts are performed in orthogonal directions figure : integer or matplotlib figure, optional Matplotlib figure used or its number. If None is given, a new figure is created. axes : matplotlib axes or 4 tuple of float: (xmin, ymin, width, height), optional The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used. title : string, optional The title dispayed on the figure. threshold : a number, None, or 'auto' If None is given, the maps are not thresholded. If a number is given, it is used to threshold the maps: values below the threshold are plotted as transparent. If auto is given, the threshold is determined magically by analysis of the map. annotate: boolean, optional If annotate is True, positions and left/right annotation are added to the plot. draw_cross: boolean, optional If draw_cross is True, a cross is drawn on the plot to indicate the cut plosition. do3d: {True, False or 'interactive'}, optional If True, Mayavi is used to plot a 3D view of the map in addition to the slicing. If 'interactive', the 3D visualization is displayed in an additional interactive window. threshold_3d: The threshold to use for the 3D view (if any). Defaults to the same threshold as that used for the 2D view. view_3d: tuple, The view used to take the screenshot: azimuth, elevation, distance and focalpoint, see the docstring of mlab.view. black_bg: boolean, optional If True, the background of the image is set to be black. If you whish to save figures with a black background, you will need to pass "facecolor='k', edgecolor='k'" to pylab's savefig. imshow_kwargs: extra keyword arguments, optional Extra keyword arguments passed to pylab.imshow Notes ----- Arrays should be passed in numpy convention: (x, y, z) ordered. Use masked arrays to create transparency: import numpy as np map = np.ma.masked_less(map, 0.5) plot_map(map, affine) """ map, affine = _xyz_order(map, affine) nan_mask = np.isnan(np.asarray(map)) if np.any(nan_mask): map = map.copy() map[nan_mask] = 0 del nan_mask # Deal with automatic settings of plot parameters if threshold == 'auto': # Threshold epsilon above a percentile value, to be sure that some # voxels are indeed threshold threshold = _fast_abs_percentile(map) + 1e-5 if do3d: try: try: from mayavi import version except ImportError: from enthought.mayavi import version if not int(version.version[0]) > 2: raise ImportError except ImportError: warnings.warn('Mayavi > 3.x not installed, plotting only 2D') do3d = False if (cut_coords is None or isinstance(cut_coords, numbers.Number) ) and slicer in ['x', 'y', 'z']: cut_coords = find_maxsep_cut_coords(map, affine, slicer=slicer, threshold=threshold, n_cuts=cut_coords) slicer = SLICERS[slicer].init_with_figure(data=map, affine=affine, threshold=threshold, cut_coords=cut_coords, figure=figure, axes=axes, black_bg=black_bg, leave_space=do3d) # Use Mayavi for the 3D plotting if do3d: from .maps_3d import plot_map_3d, m2screenshot try: from tvtk.api import tvtk except ImportError: from enthought.tvtk.api import tvtk version = tvtk.Version() offscreen = True if (version.vtk_major_version, version.vtk_minor_version) < (5, 2): offscreen = False if do3d == 'interactive': offscreen = False cmap = kwargs.get('cmap', pl.cm.cmap_d[pl.rcParams['image.cmap']]) # Computing vmin and vmax is costly in time, and is needed # later, so we compute them now, and store them for future # use vmin = kwargs.get('vmin', map.min()) kwargs['vmin'] = vmin vmax = kwargs.get('vmax', map.max()) kwargs['vmax'] = vmax try: from mayavi import mlab except ImportError: from enthought.mayavi import mlab if threshold_3d is None: threshold_3d = threshold plot_map_3d(np.asarray(map), affine, cut_coords=cut_coords, anat=anat, anat_affine=anat_affine, offscreen=offscreen, cmap=cmap, threshold=threshold_3d, view=view_3d, vmin=vmin, vmax=vmax) ax = list(slicer.axes.values())[0].ax.figure.add_axes((0.001, 0, 0.29, 1)) ax.axis('off') m2screenshot(mpl_axes=ax) if offscreen: # Clean up, so that the offscreen engine doesn't become the # default mlab.clf() engine = mlab.get_engine() try: from mayavi.core.registry import registry except: from enthought.mayavi.core.registry import registry for key, value in registry.engines.items(): if value is engine: registry.engines.pop(key) break if threshold: map = np.ma.masked_inside(map, -threshold, threshold, copy=False) _plot_anat(slicer, anat, anat_affine, title=title, annotate=annotate, draw_cross=draw_cross) slicer.plot_map(map, affine, **imshow_kwargs) return slicer
def _plot_anat(slicer, anat, anat_affine, title=None, annotate=True, draw_cross=True, dim=False, cmap=pl.cm.gray, **imshow_kwargs): """ Internal function used to plot anatomy """ canonical_anat = False if anat is None: try: anat, anat_affine, vmax_anat = _AnatCache.get_anat() canonical_anat = True except OSError as e: anat = False warnings.warn(repr(e)) black_bg = slicer._black_bg # XXX: Check that we should indeed plot an anat: we have one, and the # cut_coords are in its range if anat is not False: if canonical_anat: # We special-case the 'canonical anat', as we don't need # to do a few transforms to it. vmin = 0 vmax = vmax_anat elif dim: vmin = anat.min() vmax = anat.max() else: vmin = None vmax = None anat, anat_affine = _xyz_order(anat, anat_affine) if dim: vmean = .5*(vmin + vmax) ptp = .5*(vmax - vmin) if not is_numlike(dim): dim = .6 if black_bg: vmax = vmean + (1+dim)*ptp else: vmin = vmean - (1+dim)*ptp slicer.plot_map(anat, anat_affine, cmap=cmap, vmin=vmin, vmax=vmax, **imshow_kwargs) if annotate: slicer.annotate() if draw_cross: slicer.draw_cross() if black_bg: # To have a black background in PDF, we need to create a # patch in black for the background for ax in slicer.axes.values(): ax.ax.imshow(np.zeros((2, 2, 3)), extent=[-5000, 5000, -5000, 5000], zorder=-500) if title is not None and not title == '': slicer.title(title) return slicer
[docs]def plot_anat(anat=None, anat_affine=None, cut_coords=None, slicer='ortho', figure=None, axes=None, title=None, annotate=True, draw_cross=True, black_bg=False, dim=False, cmap=pl.cm.gray, **imshow_kwargs): """ Plot three cuts of an anatomical image (Frontal, Axial, and Lateral) Parameters ---------- anat : 3D ndarray, optional The anatomical image to be used as a background. If None is given, nipy tries to find a T1 template. anat_affine : 4x4 ndarray, optional The affine matrix going from the anatomical image voxel space to MNI space. This parameter is not used when the default anatomical is used, but it is compulsory when using an explicite anatomical image. figure : integer or matplotlib figure, optional Matplotlib figure used or its number. If None is given, a new figure is created. cut_coords: None, or a tuple of floats The MNI coordinates of the point where the cut is performed, in MNI coordinates and order. If slicer is 'ortho', this should be a 3-tuple: (x, y, z) For slicer == 'x', 'y', or 'z', then these are the coordinates of each cut in the corresponding direction. If None is given, the cuts is calculated automaticaly. slicer: {'ortho', 'x', 'y', 'z'} Choose the direction of the cuts. With 'ortho' three cuts are performed in orthogonal directions figure : integer or matplotlib figure, optional Matplotlib figure used or its number. If None is given, a new figure is created. axes : matplotlib axes or 4 tuple of float: (xmin, ymin, width, height), optional The axes, or the coordinates, in matplotlib figure space, of the axes used to display the plot. If None, the complete figure is used. title : string, optional The title dispayed on the figure. annotate: boolean, optional If annotate is True, positions and left/right annotation are added to the plot. draw_cross: boolean, optional If draw_cross is True, a cross is drawn on the plot to indicate the cut plosition. black_bg: boolean, optional If True, the background of the image is set to be black. If you whish to save figures with a black background, you will need to pass "facecolor='k', edgecolor='k'" to pylab's savefig. dim: float, optional If set, dim the anatomical image, such that vmax = vmean + (1+dim)*ptp if black_bg is set to True, or vmin = vmean - (1+dim)*ptp otherwise, where ptp = .5*(vmax - vmin) cmap: matplotlib colormap, optional The colormap for the anat imshow_kwargs: extra keyword arguments, optional Extra keyword arguments passed to pylab.imshow Notes ----- Arrays should be passed in numpy convention: (x, y, z) ordered. """ slicer = SLICERS[slicer].init_with_figure(data=anat, affine=anat_affine, threshold=0, cut_coords=cut_coords, figure=figure, axes=axes, black_bg=black_bg) _plot_anat(slicer, anat, anat_affine, title=title, annotate=annotate, draw_cross=draw_cross, dim=dim, cmap=cmap, **imshow_kwargs) return slicer
[docs]def demo_plot_map(do3d=False, **kwargs): """ Demo activation map plotting. """ map = np.zeros((182, 218, 182)) # Color a asymetric rectangle around Broca area: x, y, z = -52, 10, 22 mapped = coord_transform(x, y, z, mni_sform_inv) x_map, y_map, z_map = [int(v) for v in mapped] # Compare to values obtained using fslview. We need to add one as # voxels do not start at 0 in fslview. assert x_map == 142 assert y_map + 1 == 137 assert z_map + 1 == 95 map[x_map-5:x_map+5, y_map-3:y_map+3, z_map-10:z_map+10] = 1 return plot_map(map, mni_sform, threshold='auto', title="Broca's area", do3d=do3d, **kwargs)