Source code for nipy.labs.mask

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Utilities for extracting masks from EPI images and applying them to time
series.
"""
from __future__ import absolute_import

import math

# Major scientific libraries imports
import numpy as np
from scipy import ndimage

# Neuroimaging libraries imports
from nibabel import load, nifti1, save

from ..io.nibcompat import get_header, get_affine, get_unscaled_data
from ..externals.six import string_types

###############################################################################
# Operating on connect component
###############################################################################

[docs]def largest_cc(mask): """ Return the largest connected component of a 3D mask array. Parameters ----------- mask: 3D boolean array 3D array indicating a mask. Returns -------- mask: 3D boolean array 3D array indicating a mask, with only one connected component. """ # We use asarray to be able to work with masked arrays. mask = np.asarray(mask) labels, label_nb = ndimage.label(mask) if not label_nb: raise ValueError('No non-zero values: no connected components') if label_nb == 1: return mask.astype(np.bool) label_count = np.bincount(labels.ravel().astype(np.int)) # discard 0 the 0 label label_count[0] = 0 return labels == label_count.argmax()
[docs]def threshold_connect_components(map, threshold, copy=True): """ Given a map with some coefficients set to zero, segment the connect components with number of voxels smaller than the threshold and set them to 0. Parameters ---------- map: ndarray, The spatial map to segment threshold: scalar, The minimum number of voxels to keep a cluster. copy: bool, optional If copy is false, the input array is modified inplace Returns ------- map: ndarray, the map with connected components removed """ labels, _ = ndimage.label(map) weights = np.bincount(labels.ravel()) if copy: map = map.copy() for label, weight in enumerate(weights): if label == 0: continue if weight < threshold: map[labels == label] = 0 return map
############################################################################### # Utilities to calculate masks ###############################################################################
[docs]def compute_mask_files(input_filename, output_filename=None, return_mean=False, m=0.2, M=0.9, cc=1, exclude_zeros=False, opening=2): """ Compute a mask file from fMRI nifti file(s) Compute and write the mask of an image based on the grey level This is based on an heuristic proposed by T.Nichols: find the least dense point of the histogram, between fractions m and M of the total image histogram. In case of failure, it is usually advisable to increase m. Parameters ---------- input_filename : string nifti filename (4D) or list of filenames (3D). output_filename : string or None, optional path to save the output nifti image (if not None). return_mean : boolean, optional if True, and output_filename is None, return the mean image also, as a 3D array (2nd return argument). m : float, optional lower fraction of the histogram to be discarded. M: float, optional upper fraction of the histogram to be discarded. cc: boolean, optional if cc is True, only the largest connect component is kept. exclude_zeros: boolean, optional Consider zeros as missing values for the computation of the threshold. This option is useful if the images have been resliced with a large padding of zeros. opening: int, optional Size of the morphological opening performed as post-processing Returns ------- mask : 3D boolean array The brain mask mean_image : 3d ndarray, optional The main of all the images used to estimate the mask. Only provided if `return_mean` is True. """ if isinstance(input_filename, string_types): # One single filename or image nim = load(input_filename) # load the image from the path vol_arr = get_unscaled_data(nim) header = get_header(nim) affine = get_affine(nim) if vol_arr.ndim == 4: if isinstance(vol_arr, np.memmap): # Get rid of memmapping: it is faster. mean_volume = np.array(vol_arr, copy=True).mean(axis=-1) else: mean_volume = vol_arr.mean(axis=-1) # Make a copy, to avoid holding a reference on the full array, # and thus polluting the memory. first_volume = vol_arr[..., 0].copy() elif vol_arr.ndim == 3: mean_volume = first_volume = vol_arr else: raise ValueError('Need 4D file for mask') del vol_arr else: # List of filenames if len(list(input_filename)) == 0: raise ValueError('input_filename should be a non-empty ' 'list of file names') # We have several images, we do mean on the fly, # to avoid loading all the data in the memory # We do not use the unscaled data here?: # if the scalefactor is being used to record real # differences in intensity over the run this would break for index, filename in enumerate(input_filename): nim = load(filename) if index == 0: first_volume = nim.get_data().squeeze() mean_volume = first_volume.copy().astype(np.float32) header = get_header(nim) affine = get_affine(nim) else: mean_volume += nim.get_data().squeeze() mean_volume /= float(len(list(input_filename))) del nim if np.isnan(mean_volume).any(): tmp = mean_volume.copy() tmp[np.isnan(tmp)] = 0 mean_volume = tmp mask = compute_mask(mean_volume, first_volume, m, M, cc, opening=opening, exclude_zeros=exclude_zeros) if output_filename is not None: header['descrip'] = 'mask' output_image = nifti1.Nifti1Image(mask.astype(np.uint8), affine=affine, header=header) save(output_image, output_filename) if not return_mean: return mask else: return mask, mean_volume
[docs]def compute_mask(mean_volume, reference_volume=None, m=0.2, M=0.9, cc=True, opening=2, exclude_zeros=False): """ Compute a mask file from fMRI data in 3D or 4D ndarrays. Compute and write the mask of an image based on the grey level This is based on an heuristic proposed by T.Nichols: find the least dense point of the histogram, between fractions m and M of the total image histogram. In case of failure, it is usually advisable to increase m. Parameters ---------- mean_volume : 3D ndarray mean EPI image, used to compute the threshold for the mask. reference_volume: 3D ndarray, optional reference volume used to compute the mask. If none is give, the mean volume is used. m : float, optional lower fraction of the histogram to be discarded. M: float, optional upper fraction of the histogram to be discarded. cc: boolean, optional if cc is True, only the largest connect component is kept. opening: int, optional if opening is larger than 0, an morphological opening is performed, to keep only large structures. This step is useful to remove parts of the skull that might have been included. exclude_zeros: boolean, optional Consider zeros as missing values for the computation of the threshold. This option is useful if the images have been resliced with a large padding of zeros. Returns ------- mask : 3D boolean ndarray The brain mask """ if reference_volume is None: reference_volume = mean_volume sorted_input = np.sort(mean_volume.reshape(-1)) if exclude_zeros: sorted_input = sorted_input[sorted_input != 0] limiteinf = int(math.floor(m * len(sorted_input))) limitesup = int(math.floor(M * len(sorted_input))) delta = sorted_input[limiteinf + 1:limitesup + 1] \ - sorted_input[limiteinf:limitesup] ia = delta.argmax() threshold = 0.5 * (sorted_input[ia + limiteinf] + sorted_input[ia + limiteinf + 1]) mask = (reference_volume >= threshold) if cc: mask = largest_cc(mask) if opening > 0: mask = ndimage.binary_opening(mask.astype(np.int), iterations=opening) return mask.astype(bool)
[docs]def compute_mask_sessions(session_images, m=0.2, M=0.9, cc=1, threshold=0.5, exclude_zeros=False, return_mean=False, opening=2): """ Compute a common mask for several sessions of fMRI data. Uses the mask-finding algorithmes to extract masks for each session, and then keep only the main connected component of the a given fraction of the intersection of all the masks. Parameters ---------- session_images : list of (list of strings) or nipy image objects A list of images/list of nifti filenames. Each inner list/image represents a session. m : float, optional lower fraction of the histogram to be discarded. M: float, optional upper fraction of the histogram to be discarded. cc: boolean, optional if cc is True, only the largest connect component is kept. threshold : float, optional the inter-session threshold: the fraction of the total number of session in for which a voxel must be in the mask to be kept in the common mask. threshold=1 corresponds to keeping the intersection of all masks, whereas threshold=0 is the union of all masks. exclude_zeros: boolean, optional Consider zeros as missing values for the computation of the threshold. This option is useful if the images have been resliced with a large padding of zeros. return_mean: boolean, optional if return_mean is True, the mean image accross subjects is returned. opening: int, optional, size of the morphological opening Returns ------- mask : 3D boolean ndarray The brain mask mean : 3D float array The mean image """ mask, mean = None, None for index, session in enumerate(session_images): if hasattr(session, 'get_data'): mean = session.get_data() if mean.ndim > 3: mean = mean.mean(-1) this_mask = compute_mask(mean, None, m=m, M=M, cc=cc, opening=opening, exclude_zeros=exclude_zeros) if return_mean: this_mask = this_mask, mean else: this_mask = compute_mask_files( session, m=m, M=M, cc=cc, exclude_zeros=exclude_zeros, return_mean=return_mean, opening=opening) if return_mean: this_mask, this_mean = this_mask if mean is None: mean = this_mean.astype(np.float) else: mean += this_mean this_mask = this_mask.astype(np.int8) if mask is None: mask = this_mask else: mask += this_mask # Free memory early del this_mask # Take the "half-intersection", i.e. all the voxels that fall within # 50% of the individual masks. mask = (mask > threshold * len(list(session_images))) if cc: # Select the largest connected component (each mask is # connect, but the half-interesection may not be): mask = largest_cc(mask) mask = mask.astype(np.bool) if return_mean: # Divide by the number of sessions mean /= len(session_images) return mask, mean return mask
[docs]def intersect_masks(input_masks, output_filename=None, threshold=0.5, cc=True): """ Given a list of input mask images, generate the output image which is the the threshold-level intersection of the inputs Parameters ---------- input_masks: list of strings or ndarrays paths of the input images nsubj set as len(input_mask_files), or individual masks. output_filename, string: Path of the output image, if None no file is saved. threshold: float within [0, 1[, optional gives the level of the intersection. threshold=1 corresponds to keeping the intersection of all masks, whereas threshold=0 is the union of all masks. cc: bool, optional If true, extract the main connected component Returns ------- grp_mask, boolean array of shape the image shape """ grp_mask = None if threshold > 1: raise ValueError('The threshold should be < 1') if threshold < 0: raise ValueError('The threshold should be > 0') threshold = min(threshold, 1 - 1.e-7) for this_mask in input_masks: if isinstance(this_mask, string_types): # We have a filename this_mask = load(this_mask).get_data() if grp_mask is None: grp_mask = this_mask.copy().astype(np.int) else: # If this_mask is floating point and grp_mask is integer, numpy 2 # casting rules raise an error for in-place addition. # Hence we do it long-hand. # XXX should the masks be coerced to int before addition? grp_mask = grp_mask + this_mask grp_mask = grp_mask > (threshold * len(list(input_masks))) if np.any(grp_mask > 0) and cc: grp_mask = largest_cc(grp_mask) if output_filename is not None: if isinstance(input_masks[0], string_types): nim = load(input_masks[0]) header = get_header(nim) affine = get_affine(nim) else: header = dict() affine = np.eye(4) header['descrip'] = 'mask image' output_image = nifti1.Nifti1Image(grp_mask.astype(np.uint8), affine=affine, header=header, ) save(output_image, output_filename) return grp_mask > 0
############################################################################### # Time series extraction ###############################################################################
[docs]def series_from_mask(filenames, mask, dtype=np.float32, smooth=False, ensure_finite=True): """ Read the time series from the given sessions filenames, using the mask. Parameters ----------- filenames: list of 3D nifti file names, or 4D nifti filename. Files are grouped by session. mask: 3d ndarray 3D mask array: true where a voxel should be used. smooth: False or float, optional If smooth is not False, it gives the size, in voxel of the spatial smoothing to apply to the signal. ensure_finite: boolean, optional If ensure_finite is True, the non-finite values (NaNs and infs) found in the images will be replaced by zeros Returns -------- session_series: ndarray 3D array of time course: (session, voxel, time) header: header object The header of the first file. Notes ----- When using smoothing, ensure_finite should be True: as elsewhere non finite values will spread accross the image. """ assert len(filenames) != 0, ( 'filenames should be a file name or a list of file names, ' '%s (type %s) was passed' % (filenames, type(filenames))) mask = mask.astype(np.bool) if smooth: # Convert from a sigma to a FWHM: smooth /= np.sqrt(8 * np.log(2)) if isinstance(filenames, string_types): # We have a 4D nifti file data_file = load(filenames) header = get_header(data_file) series = data_file.get_data() if ensure_finite: # SPM tends to put NaNs in the data outside the brain series[np.logical_not(np.isfinite(series))] = 0 series = series.astype(dtype) affine = get_affine(data_file)[:3, :3] del data_file if isinstance(series, np.memmap): series = np.asarray(series).copy() if smooth: vox_size = np.sqrt(np.sum(affine ** 2, axis=0)) smooth_sigma = smooth / vox_size for this_volume in np.rollaxis(series, -1): this_volume[...] = ndimage.gaussian_filter(this_volume, smooth_sigma) series = series[mask] else: nb_time_points = len(list(filenames)) series = np.zeros((mask.sum(), nb_time_points), dtype=dtype) for index, filename in enumerate(filenames): data_file = load(filename) data = data_file.get_data() if ensure_finite: # SPM tends to put NaNs in the data outside the brain data[np.logical_not(np.isfinite(data))] = 0 data = data.astype(dtype) if smooth is not False: affine = get_affine(data_file)[:3, :3] vox_size = np.sqrt(np.sum(affine ** 2, axis=0)) smooth_sigma = smooth / vox_size data = ndimage.gaussian_filter(data, smooth_sigma) series[:, index] = data[mask] # Free memory early del data if index == 0: header = get_header(data_file) return series, header