Source code for nipy.core.image.image_spaces

""" Utilities for working with Images and common neuroimaging spaces

Images are very general things, and don't know anything about the kinds of
spaces they refer to, via their coordinate map.

There are a set of common neuroimaging spaces.  When we create neuroimaging
Images, we want to place them in neuroimaging spaces, and return information
about common neuroimaging spaces.

We do this by putting information about neuroimaging spaces in functions and
variables in the ``nipy.core.reference.spaces`` module, and in this module.

This keeps the specific neuroimaging spaces out of our Image object.

>>> from nipy.core.api import Image, vox2mni, rollimg, xyz_affine, as_xyz_image

Make a standard 4D xyzt image in MNI space.

First the data and affine:

>>> data = np.arange(24).reshape((1,2,3,4))
>>> affine = np.diag([2,3,4,1]).astype(float)

We can add the TR (==2.0) to make the full 5x5 affine we need

>>> img = Image(data, vox2mni(affine, 2.0))
>>> img.affine
array([[ 2.,  0.,  0.,  0.,  0.],
       [ 0.,  3.,  0.,  0.,  0.],
       [ 0.,  0.,  4.,  0.,  0.],
       [ 0.,  0.,  0.,  2.,  0.],
       [ 0.,  0.,  0.,  0.,  1.]])

In this case the neuroimaging 'xyz_affine' is just the 4x4 from the 5x5 in the image

>>> xyz_affine(img)
array([[ 2.,  0.,  0.,  0.],
       [ 0.,  3.,  0.,  0.],
       [ 0.,  0.,  4.,  0.],
       [ 0.,  0.,  0.,  1.]])

However, if we roll time first in the image array, we can't any longer get an
xyz_affine that makes sense in relationship to the voxel data:

>>> img_t0 = rollimg(img, 't')
>>> xyz_affine(img_t0) #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
    ...
AxesError: First 3 input axes must correspond to X, Y, Z

But we can fix this:

>>> img_t0_affable = as_xyz_image(img_t0)
>>> xyz_affine(img_t0_affable)
array([[ 2.,  0.,  0.,  0.],
       [ 0.,  3.,  0.,  0.],
       [ 0.,  0.,  4.,  0.],
       [ 0.,  0.,  0.,  1.]])

It also works with nibabel images, which can only have xyz_affines:

>>> import nibabel as nib
>>> nimg = nib.Nifti1Image(data, affine)
>>> xyz_affine(nimg)
array([[ 2.,  0.,  0.,  0.],
       [ 0.,  3.,  0.,  0.],
       [ 0.,  0.,  4.,  0.],
       [ 0.,  0.,  0.,  1.]])
"""
from __future__ import absolute_import

import sys

import numpy as np

from ...fixes.nibabel import io_orientation
from ...io import nibcompat

from ..image.image import Image
from ..reference import spaces as rsp
from ..reference.coordinate_map import AffineTransform

# Legacy repr printing from numpy.
from nipy.testing import legacy_printing as setup_module  # noqa


[docs]def xyz_affine(img, name2xyz=None): """ Return xyz affine from image `img` if possible, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` or attribute ``affine`` or method ``get_affine`` name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- xyz_aff : (4,4) array voxel to X, Y, Z affine mapping Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates Examples -------- >>> from nipy.core.api import vox2mni, Image >>> arr = np.arange(24).reshape((2,3,4,1)).astype(float) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> xyz_affine(img) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> xyz_affine(nimg) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) """ if hasattr(img, 'coordmap'): # nipy image return rsp.xyz_affine(img.coordmap, name2xyz) return nibcompat.get_affine(img)
[docs]def is_xyz_affable(img, name2xyz=None): """ Return True if the image `img` has an xyz affine Parameters ---------- img : ``Image`` or nibabel ``SpatialImage`` If ``Image`` test ``img.coordmap``. If a nibabel image, return True name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- tf : bool True if `img` has an xyz affine, False otherwise Examples -------- >>> from nipy.core.api import vox2mni, Image, rollimg >>> arr = np.arange(24).reshape((2,3,4,1)) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(img) True >>> time0_img = rollimg(img, 't') >>> time0_img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('l', 'i', 'j', 'k'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 0., 2., 0., 0., 0.], [ 0., 0., 3., 0., 0.], [ 0., 0., 0., 4., 0.], [ 5., 0., 0., 0., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(time0_img) False Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> is_xyz_affable(nimg) True """ try: xyz_affine(img, name2xyz) except rsp.SpaceError: return False return True
[docs]def as_xyz_image(img, name2xyz=None): """ Return version of `img` that has a valid xyz affine, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` attribute (``Image``) or a ``get_affine`` method (nibabel image object) name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- reo_img : ``Image`` instance or nibabel image Returns image of same type as `img` input. If necessary, `reo_img` has its data and coordmap changed to allow it to return an xyz affine. If `img` is already xyz affable we return the input unchanged (``img is reo_img``). Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates """ try: aff = xyz_affine(img, name2xyz) except (rsp.AxesError, rsp.AffineError): pass else: return img cmap = img.coordmap order = rsp.xyz_order(cmap.function_range, name2xyz) # Reorder reference to canonical order reo_img = img.reordered_reference(order) # Which input axes correspond? ornt = io_orientation(reo_img.coordmap.affine) current_in_order = ornt[:,0] # Set nan to inf to make np.argsort work for old numpy versions current_in_order[np.isnan(current_in_order)] = np.inf # Do we have the first three axes somewhere? if not set((0,1,2)).issubset(current_in_order): raise rsp.AxesError("One of x, y or z outputs missing a " "corresponding input axis") desired_input_order = np.argsort(current_in_order) reo_img = reo_img.reordered_axes(list(desired_input_order)) try: aff = xyz_affine(reo_img, name2xyz) except rsp.SpaceError: # Python 2.5 / 3 compatibility e = sys.exc_info()[1] raise e.__class__("Could not reorder so xyz coordinates did not " "depend on the other axis coordinates: " + str(e)) return reo_img
[docs]def make_xyz_image(data, xyz_affine, world, metadata=None): """ Create 3D+ image embedded in space named in `world` Parameters ---------- data : object Object returning array from ``np.asarray(obj)``, and having ``shape`` attribute. Should have at least 3 dimensions (``len(shape) >= 3``), and these three first 3 dimensions should be spatial xyz_affine : (4, 4) array-like or tuple if (4, 4) array-like (the usual case), then an affine relating spatial dimensions in data (dimensions 0:3) to mm in XYZ space given in `world`. If a tuple, then contains two values: the (4, 4) array-like, and a sequence of scalings for the dimensions greater than 3. See examples. world : str or XYZSpace or CoordSysMaker or CoordinateSystem World 3D space to which affine refers. See ``spaces.get_world_cs()`` metadata : None or mapping, optional metadata for created image. Defaults to None, giving empty metadata. Returns ------- img : Image image containing `data`, with coordmap constructed from `affine` and `world`, and with default voxel input coordinates. If the data has more than 3 dimensions, and you didn't specify the added zooms with a tuple `xyz_affine` parameter, the coordmap affine gets filled out with extra ones on the diagonal to give an (N+1, N+1) affine, with ``N = len(data.shape)`` Examples -------- >>> data = np.arange(24).reshape((2, 3, 4)) >>> aff = np.diag([4, 5, 6, 1]) >>> img = make_xyz_image(data, aff, 'mni') >>> img Image( data=array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], <BLANKLINE> [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]), coordmap=AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S'), name='mni', coord_dtype=float64), affine=array([[ 4., 0., 0., 0.], [ 0., 5., 0., 0.], [ 0., 0., 6., 0.], [ 0., 0., 0., 1.]]) )) Now make data 4D; we just add 1. to the diagonal for the new dimension >>> data4 = data[..., None] >>> img = make_xyz_image(data4, aff, 'mni') >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 4., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0.], [ 0., 0., 6., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]]) ) We can pass in a scalar or tuple to specify scaling for the extra dimension >>> img = make_xyz_image(data4, (aff, 2.0), 'mni') >>> img.coordmap.affine array([[ 4., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0.], [ 0., 0., 6., 0., 0.], [ 0., 0., 0., 2., 0.], [ 0., 0., 0., 0., 1.]]) >>> data5 = data4[..., None] >>> img = make_xyz_image(data5, (aff, (2.0, 3.0)), 'mni') >>> img.coordmap.affine array([[ 4., 0., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0., 0.], [ 0., 0., 6., 0., 0., 0.], [ 0., 0., 0., 2., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 1.]]) """ N = len(data.shape) if N < 3: raise ValueError('Need data with at least 3 dimensions') if type(xyz_affine) is tuple: xyz_affine, added_zooms = xyz_affine # Could be scalar added zooms try: len(added_zooms) except TypeError: added_zooms = (added_zooms,) if len(added_zooms) != (N - 3): raise ValueError('Wrong number of added zooms') else: added_zooms = (1,) * (N - 3) xyz_affine = np.asarray(xyz_affine) if not xyz_affine.shape == (4, 4): raise ValueError("Expecting 4 x 4 affine") # Make coordinate map world_cm = rsp.get_world_cs(world, N) voxel_cm = rsp.voxel_csm(N) if N > 3: affine = np.diag((1., 1, 1) + added_zooms + (1,)) affine[:3, :3] = xyz_affine[:3, :3] affine[:3, -1] = xyz_affine[:3, 3] else: affine = xyz_affine cmap = AffineTransform(voxel_cm, world_cm, affine) return Image(data, cmap, metadata)