modalities.fmri.utils

Module: modalities.fmri.utils

Inheritance diagram for nipy.modalities.fmri.utils:

digraph inheritance24aa149a64 { rankdir=LR; size="8.0, 12.0"; "fmri.utils.Interp1dNumeric" [URL="#nipy.modalities.fmri.utils.Interp1dNumeric",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="Wrapper for interp1 to raise TypeError for object array input"]; "interpolate.interpolate.interp1d" -> "fmri.utils.Interp1dNumeric" [arrowsize=0.5,style="setlinewidth(0.5)"]; "fmri.utils.TimeConvolver" [URL="#nipy.modalities.fmri.utils.TimeConvolver",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="Make a convolution kernel from a symbolic function of t"]; "interpolate.interpolate.interp1d" [fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",tooltip="Interpolate a 1-D function."]; }

This module defines some convenience functions of time.

interp : an expresion for a interpolated function of time

linear_interpan expression for a linearly interpolated function of

time

step_function : an expression for a step function of time

events : a convenience function to generate sums of events

blocks : a convenience function to generate sums of blocks

convolve_functions : numerically convolve two functions of time

fourier_basis : a convenience function to generate a Fourier basis

Classes

Interp1dNumeric

class nipy.modalities.fmri.utils.Interp1dNumeric(x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False)[source]

Bases: scipy.interpolate.interpolate.interp1d

Wrapper for interp1 to raise TypeError for object array input

We need this because sympy will try to evaluate interpolated functions when constructing expressions involving floats. At least sympy 1.0 only accepts TypeError or AttributeError as indication that the implemented value cannot be sampled with the sympy expression. Therefore, raise a TypeError directly for an input giving an object array (such as a sympy expression), rather than letting interp1d raise a ValueError.

See:

__init__(x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=nan, assume_sorted=False)

Initialize a 1D linear interpolation class.

dtype
property fill_value

TimeConvolver

class nipy.modalities.fmri.utils.TimeConvolver(expr, support, delta, fill=0)[source]

Bases: object

Make a convolution kernel from a symbolic function of t

A convolution kernel is a function with extra attributes to allow it to function as a kernel for numerical convolution (see convolve_functions()).

Parameters

expr : sympy expression

An expression that is a function of t only.

support : 2 sequence

Sequence is (low, high) where expression is defined between low and high, and can be assumed to be fill otherwise

delta : float

smallest change in domain of expr to use for numerical evaluation of expr

__init__(expr, support, delta, fill=0)[source]

Initialize self. See help(type(self)) for accurate signature.

convolve(g, g_interval, name=None, **kwargs)[source]

Convolve sympy expression g with this kernel

Parameters

g : sympy expr

An expression that is a function of t only.

g_interval : (2,) sequence of floats

Start and end of the interval of t over which to convolve g

name : None or str, optional

Name of the convolved function in the resulting expression. Defaults to one created by utils.interp.

**kwargs : keyword args, optional

Any other arguments to pass to the interp1d function in creating the numerical function for fg.

Returns

fg : sympy expr

An symbolic expression that is a function of t only, and that can be lambdified to produce a function returning the convolved series from an input array.

Functions

nipy.modalities.fmri.utils.blocks(intervals, amplitudes=None, name=None)[source]

Step function based on a sequence of intervals.

Parameters

intervals : (S,) sequence of (2,) sequences

Sequence (S0, S1, … S(N-1)) of sequences, where S0 (etc) are sequences of length 2, giving ‘on’ and ‘off’ times of block

amplitudes : (S,) sequence of float, optional

Optional amplitudes for each block. Defaults to 1.

name : None or str, optional

Name of the convolved function in the resulting expression. Defaults to one created by utils.interp.

Returns

b_of_t : sympy expr

Sympy expression b(t) where b is a sympy anonymous function of time that implements the block step function

Examples

>>> on_off = [[1,2],[3,4]]
>>> tval = np.array([0.4,1.4,2.4,3.4])
>>> b = blocks(on_off)
>>> lam = lambdify_t(b)
>>> lam(tval)
array([ 0.,  1.,  0.,  1.])
>>> b = blocks(on_off, amplitudes=[3,5])
>>> lam = lambdify_t(b)
>>> lam(tval)
array([ 0.,  3.,  0.,  5.])
nipy.modalities.fmri.utils.convolve_functions(f, g, f_interval, g_interval, dt, fill=0, name=None, **kwargs)[source]

Expression containing numerical convolution of fn1 with fn2

Parameters

f : sympy expr

An expression that is a function of t only.

g : sympy expr

An expression that is a function of t only.

f_interval : (2,) sequence of float

The start and end of the interval of t over which to convolve values of f

g_interval : (2,) sequence of floats

Start and end of the interval of t over which to convolve g

dt : float

Time step for discretization. We use this for creating the interpolator to form the numerical implementation

fill : None or float

Value to return from sampling output fg function outside range.

name : None or str, optional

Name of the convolved function in the resulting expression. Defaults to one created by utils.interp.

**kwargs : keyword args, optional

Any other arguments to pass to the interp1d function in creating the numerical function for fg.

Returns

fg : sympy expr

An symbolic expression that is a function of t only, and that can be lambdified to produce a function returning the convolved series from an input array.

Examples

>>> from nipy.algorithms.statistics.formula.formulae import Term
>>> t = Term('t')

This is a square wave on [0,1]

>>> f1 = (t > 0) * (t < 1)

The convolution of f1 with itself is a triangular wave on [0, 2], peaking at 1 with height 1

>>> tri = convolve_functions(f1, f1, [0, 2], [0, 2], 1.0e-3, name='conv')

The result is a symbolic function

>>> print(tri)
conv(t)

Get the numerical values for a time vector

>>> ftri = lambdify(t, tri)
>>> x = np.arange(0, 2, 0.2)
>>> y = ftri(x)

The peak is at 1 >>> x[np.argmax(y)] 1.0

nipy.modalities.fmri.utils.define(name, expr)[source]

Create function of t expression from arbitrary expression expr

Take an arbitrarily complicated expression expr of ‘t’ and make it an expression that is a simple function of t, of form '%s(t)' % name such that when it evaluates (via lambdify) it has the right values.

Parameters

expr : sympy expression

with only ‘t’ as a Symbol

name : str

Returns

nexpr: sympy expression

Examples

>>> t = Term('t')
>>> expr = t**2 + 3*t
>>> print(expr)  
3*t + t**2
>>> newexpr = define('f', expr)
>>> print(newexpr)
f(t)
>>> f = lambdify_t(newexpr)
>>> f(4)
28
>>> 3*4+4**2
28
nipy.modalities.fmri.utils.events(times, amplitudes=None, f=DiracDelta, g=a)[source]

Return a sum of functions based on a sequence of times.

Parameters

times : sequence

vector of onsets length \(N\)

amplitudes : None or sequence length \(N\), optional

Optional sequence of amplitudes. None (default) results in sequence length \(N\) of 1s

f : sympy.Function, optional

Optional function. Defaults to DiracDelta, can be replaced with another function, f, in which case the result is the convolution with f.

g : sympy.Basic, optional

Optional sympy expression function of amplitudes. The amplitudes, should be represented by the symbol ‘a’, which will be substituted, by the corresponding value in amplitudes.

Returns

sum_expression : Sympy.Add

Sympy expression of time \(t\), where onsets, as a function of \(t\), have been symbolically convolved with function f, and any function g of corresponding amplitudes.

Examples

We import some sympy stuff so we can test if we’ve got what we expected

>>> from sympy import DiracDelta, Symbol, Function
>>> from nipy.modalities.fmri.utils import T
>>> evs = events([3,6,9])
>>> evs == DiracDelta(-9 + T) + DiracDelta(-6 + T) + DiracDelta(-3 + T)
True
>>> hrf = Function('hrf')
>>> evs = events([3,6,9], f=hrf)
>>> evs == hrf(-9 + T) + hrf(-6 + T) + hrf(-3 + T)
True
>>> evs = events([3,6,9], amplitudes=[2,1,-1])
>>> evs == -DiracDelta(-9 + T) + 2*DiracDelta(-3 + T) + DiracDelta(-6 + T)
True
nipy.modalities.fmri.utils.fourier_basis(freq)[source]

sin and cos Formula for Fourier drift

The Fourier basis consists of sine and cosine waves of given frequencies.

Parameters

freq : sequence of float

Frequencies for the terms in the Fourier basis.

Returns

f : Formula

Examples

>>> f=fourier_basis([1,2,3])
>>> f.terms
array([cos(2*pi*t), sin(2*pi*t), cos(4*pi*t), sin(4*pi*t), cos(6*pi*t),
       sin(6*pi*t)], dtype=object)
>>> f.mean
_b0*cos(2*pi*t) + _b1*sin(2*pi*t) + _b2*cos(4*pi*t) + _b3*sin(4*pi*t) + _b4*cos(6*pi*t) + _b5*sin(6*pi*t)
nipy.modalities.fmri.utils.interp(times, values, fill=0, name=None, **kw)[source]

Generic interpolation function of t given times and values

Imterpolator such that:

f(times[i]) = values[i]

if t < times[0] or t > times[-1]:

f(t) = fill

See scipy.interpolate.interp1d for details of interpolation types and other keyword arguments. Default is ‘kind’ is linear, making this function, by default, have the same behavior as linear_interp.

Parameters

times : array-like

Increasing sequence of times

values : array-like

Values at the specified times

fill : None or float, optional

Value on the interval (-np.inf, times[0]). Default 0. If None, raises error outside bounds

name : None or str, optional

Name of symbolic expression to use. If None, a default is used.

**kw : keyword args, optional

passed to interp1d

Returns

f : sympy expression

A Function of t.

Examples

>>> s = interp([0,4,5.],[2.,4,6])
>>> tval = np.array([-0.1,0.1,3.9,4.1,5.1])
>>> res = lambdify_t(s)(tval)

0 outside bounds by default

>>> np.allclose(res, [0, 2.05, 3.95, 4.2, 0])
True
nipy.modalities.fmri.utils.lambdify_t(expr)[source]

Return sympy function of t expr lambdified as function of t

Parameters

expr : sympy expr

Returns

func : callable

Numerical implementation of function

nipy.modalities.fmri.utils.linear_interp(times, values, fill=0, name=None, **kw)[source]

Linear interpolation function of t given times and values

Imterpolator such that:

f(times[i]) = values[i]

if t < times[0] or t > times[-1]:

f(t) = fill

This version of the function enforces the ‘linear’ kind of interpolation (argument to scipy.interpolate.interp1d).

Parameters

times : array-like

Increasing sequence of times

values : array-like

Values at the specified times

fill : None or float, optional

Value on the interval (-np.inf, times[0]). Default 0. If None, raises error outside bounds

name : None or str, optional

Name of symbolic expression to use. If None, a default is used.

**kw : keyword args, optional

passed to interp1d

Returns

f : sympy expression

A Function of t.

Examples

>>> s = linear_interp([0,4,5.],[2.,4,6])
>>> tval = np.array([-0.1,0.1,3.9,4.1,5.1])
>>> res = lambdify_t(s)(tval)

0 outside bounds by default

>>> np.allclose(res, [0, 2.05, 3.95, 4.2, 0])
True
nipy.modalities.fmri.utils.step_function(times, values, name=None, fill=0)[source]

Right-continuous step function of time t

Function of t such that

f(times[i]) = values[i]

if t < times[0]:

f(t) = fill

Parameters

times : (N,) sequence

Increasing sequence of times

values : (N,) sequence

Values at the specified times

fill : float

Value on the interval (-np.inf, times[0])

name : str

Name of symbolic expression to use. If None, a default is used.

Returns

f_t : sympy expr

Sympy expression f(t) where f is a sympy implemented anonymous function of time that implements the step function. To get the numerical version of the function, use lambdify_t(f_t)

Examples

>>> s = step_function([0,4,5],[2,4,6])
>>> tval = np.array([-0.1,3.9,4.1,5.1])
>>> lam = lambdify_t(s)
>>> lam(tval)
array([ 0.,  2.,  4.,  6.])