modalities.fmri.spm.model

Module: modalities.fmri.spm.model

Inheritance diagram for nipy.modalities.fmri.spm.model:

digraph inheritance09fa802a2b { rankdir=LR; size="8.0, 12.0"; "spm.model.SecondStage" [URL="#nipy.modalities.fmri.spm.model.SecondStage",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="Parameters"]; }

Class

SecondStage

class nipy.modalities.fmri.spm.model.SecondStage(fmri_image, formula, sigma, outputs=[], volume_start_times=None)[source]

Bases: object

Parameters

fmri_image : FmriImageList

object returning 4D array from np.asarray, having attribute volume_start_times (if volume_start_times is None), and such that object[0] returns something with attributes shape

formula : nipy.algorithms.statistics.formula.Formula

sigma :

outputs :

volume_start_times :

__init__(fmri_image, formula, sigma, outputs=[], volume_start_times=None)[source]

Initialize self. See help(type(self)) for accurate signature.

execute()[source]

Functions

nipy.modalities.fmri.spm.model.Fmask(Fimg, dfnum, dfdenom, pvalue=0.0001)[source]

Create mask for use in estimating pooled covariance based on an F contrast.

nipy.modalities.fmri.spm.model.estimate_pooled_covariance(resid, ARtarget=[0.3], mask=None)[source]

Use SPM’s REML implementation to estimate a pooled covariance matrix.

Thresholds an F statistic at a marginal pvalue to estimate covariance matrix.