labs.spatial_models.structural_bfls

Module: labs.spatial_models.structural_bfls

Inheritance diagram for nipy.labs.spatial_models.structural_bfls:

digraph inheritanceaaa97adb5e { rankdir=LR; size="8.0, 12.0"; "spatial_models.structural_bfls.LandmarkRegions" [URL="#nipy.labs.spatial_models.structural_bfls.LandmarkRegions",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="This class is intended to represent a set of inter-subject regions"]; }

The main routine of this module implement the LandmarkRegions class, that is used to represent Regions of interest at the population level (in a template space).

This has been used in Thirion et al. Structural Analysis of fMRI Data Revisited: Improving the Sensitivity and Reliability of fMRI Group Studies. IEEE TMI 2007

Author : Bertrand Thirion, 2006-2013

LandmarkRegions

class nipy.labs.spatial_models.structural_bfls.LandmarkRegions(domain, k, indiv_coord, subjects, confidence)[source]

Bases: object

This class is intended to represent a set of inter-subject regions It should inherit from some abstract multiple ROI class, not implemented yet.

__init__(domain, k, indiv_coord, subjects, confidence)[source]

Building the landmark_region

Parameters

domain: ROI instance

defines the spatial context of the SubDomains

k: int,

the number of landmark regions considered

indiv_coord: k-length list of arrays,

coordinates of the nodes in some embedding space.

subjects: k-length list of integers

these correspond to an ROI feature: the subject index of individual regions

confidence: k-length list of arrays,

confidence values for the regions (0 is low, 1 is high)

centers()[source]

returns the average of the coordinates for each region

kernel_density(k=None, coord=None, sigma=1.0)[source]

Compute the density of a component as a kde

Parameters

k: int (<= self.k) or None

component upon which the density is computed if None, the sum is taken over k

coord: array of shape(n, self.dom.em_dim), optional

a set of input coordinates

sigma: float, optional

kernel size

Returns

kde: array of shape(n)

the density sampled at the coords

map_label(coord=None, pval=1.0, sigma=1.0)[source]

Sample the set of landmark regions on the proposed coordiante set cs, assuming a Gaussian shape

Parameters

coord: array of shape(n,dim), optional,

a set of input coordinates

pval: float in [0,1]), optional

cutoff for the CR, i.e. highest posterior density threshold

sigma: float, positive, optional

spatial scale of the spatial model

Returns

label: array of shape (n): the posterior labelling

show()[source]

function to print basic information on self

roi_prevalence()[source]

Return a confidence index over the different rois

Returns

confid: array of shape self.k

the population_prevalence

nipy.labs.spatial_models.structural_bfls.build_landmarks(domain, coords, subjects, labels, confidence=None, prevalence_pval=0.95, prevalence_threshold=0, sigma=1.0)[source]

Given a list of hierarchical ROIs, and an associated labelling, this creates an Amer structure wuch groups ROIs with the same label.

Parameters

domain: discrete_domain.DiscreteDomain instance,

description of the spatial context of the landmarks

coords: array of shape(n, 3)

Sets of coordinates for the different objects

subjects: array of shape (n), dtype = np.int

indicators of the dataset the objects come from

labels: array of shape (n), dtype = np.int

index of the landmark the object is associated with

confidence: array of shape (n),

measure of the significance of the regions

prevalence_pval: float, optional

prevalence_threshold: float, optional,

(c) A label should be present in prevalence_threshold subjects with a probability>prevalence_pval in order to be valid

sigma: float optional,

regularizing constant that defines a prior on the region extent

Returns

LR : None or structural_bfls.LR instance

describing a cross-subject set of ROIs. If inference yields a null result, LR is set to None

newlabel: array of shape (n)

a relabelling of the individual ROIs, similar to u, that discards labels that do not fulfill the condition (c)