labs.datasets.volumes.volume_img

Module: labs.datasets.volumes.volume_img

Inheritance diagram for nipy.labs.datasets.volumes.volume_img:

digraph inheritance61209169ab { rankdir=LR; size="8.0, 12.0"; "volumes.volume_data.VolumeData" [URL="nipy.labs.datasets.volumes.volume_data.html#nipy.labs.datasets.volumes.volume_data.VolumeData",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="A class representing data embedded in a 3D space "]; "volumes.volume_field.VolumeField" -> "volumes.volume_data.VolumeData" [arrowsize=0.5,style="setlinewidth(0.5)"]; "volumes.volume_field.VolumeField" [URL="nipy.labs.datasets.volumes.volume_field.html#nipy.labs.datasets.volumes.volume_field.VolumeField",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="The base volumetric structure."]; "volumes.volume_grid.VolumeGrid" [URL="nipy.labs.datasets.volumes.volume_grid.html#nipy.labs.datasets.volumes.volume_grid.VolumeGrid",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="A class representing data stored in a 3+D array embedded in a 3D"]; "volumes.volume_data.VolumeData" -> "volumes.volume_grid.VolumeGrid" [arrowsize=0.5,style="setlinewidth(0.5)"]; "volumes.volume_img.VolumeImg" [URL="#nipy.labs.datasets.volumes.volume_img.VolumeImg",fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5)",target="_top",tooltip="A regularly-spaced image for embedding data in an x, y, z 3D"]; "volumes.volume_grid.VolumeGrid" -> "volumes.volume_img.VolumeImg" [arrowsize=0.5,style="setlinewidth(0.5)"]; }

An image that stores the data as an (x, y, z, …) array, with an affine mapping to the world space

VolumeImg

class nipy.labs.datasets.volumes.volume_img.VolumeImg(data, affine, world_space, metadata=None, interpolation='continuous')[source]

Bases: nipy.labs.datasets.volumes.volume_grid.VolumeGrid

A regularly-spaced image for embedding data in an x, y, z 3D world, for neuroimaging.

This object is an ndarray representing a volume, with the first 3 dimensions being spatial, and mapped to a named world space using an affine (4x4 matrix).

Notes

The data is stored in an undefined way: prescalings might need to be applied to it before using it, or the data might be loaded on demand. The best practice to access the data is not to access the _data attribute, but to use the get_data method.

Attributes

affine

(4x4 ndarray) Affine mapping from indices to world coordinates.

world_space

(string) Name of the world space the data is embedded in. For instance mni152.

metadata

(dictionnary) Optional, user-defined, dictionnary used to carry around extra information about the data as it goes through transformations. The consistency of this information may not be maintained as the data is modified.

interpolation

(‘continuous’ or ‘nearest’) String giving the interpolation logic used when calculating values in different world spaces

_data :

Private pointer to the data.

__init__(data, affine, world_space, metadata=None, interpolation='continuous')[source]

Creates a new neuroimaging image with an affine mapping.

Parameters

data : ndarray

ndarray representing the data.

affine : 4x4 ndarray

affine transformation to the reference world space

world_space : string

name of the reference world space.

metadata : dictionnary

dictionnary of user-specified information to store with the image.

affine = array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])
world_space = ''
metadata = {}
interpolation = 'continuous'
like_from_data(data)[source]

Returns an volumetric data structure with the same relationship between data and world space, and same metadata, but different data.

Parameters

data: ndarray

get_transform()[source]

Returns the transform object associated with the volumetric structure which is a general description of the mapping from the values to the world space.

Returns

transform : nipy.datasets.Transform object

get_affine()[source]
resampled_to_img(target_image, interpolation=None)[source]

Resample the data to be on the same voxel grid than the target volume structure.

Parameters

target_image : nipy image

Nipy image onto the voxel grid of which the data will be resampled. This can be any kind of img understood by Nipy (datasets, pynifti objects, nibabel object) or a string giving the path to a nifti of analyse image.

interpolation : None, ‘continuous’ or ‘nearest’, optional

Interpolation type used when calculating values in different word spaces. If None, the image’s interpolation logic is used.

Returns

resampled_image : nipy_image

New nipy image with the data resampled.

Notes

Both the target image and the original image should be embedded in the same world space.

as_volume_img(affine=None, shape=None, interpolation=None, copy=True)[source]

Resample the image to be an image with the data points lying on a regular grid with an affine mapping to the word space (a nipy VolumeImg).

Parameters

affine: 4x4 or 3x3 ndarray, optional

Affine of the new voxel grid or transform object pointing to the new voxel coordinate grid. If a 3x3 ndarray is given, it is considered to be the rotation part of the affine, and the best possible bounding box is calculated, in this case, the shape argument is not used. If None is given, a default affine is provided by the image.

shape: (n_x, n_y, n_z), tuple of integers, optional

The shape of the grid used for sampling, if None is given, a default affine is provided by the image.

interpolation : None, ‘continuous’ or ‘nearest’, optional

Interpolation type used when calculating values in different word spaces. If None, the image’s interpolation logic is used.

Returns

resampled_image : nipy VolumeImg

New nipy VolumeImg with the data sampled on the grid defined by the affine and shape.

Notes

The coordinate system of the image is not changed: the returned image points to the same world space.

xyz_ordered(resample=False, copy=True)[source]

Returns an image with the affine diagonal and positive in the world space it is embedded in.

Parameters

resample: boolean, optional

If resample is False, no resampling is performed, the axis are only permuted. If it is impossible to get xyz ordering by permuting the axis, a ‘CompositionError’ is raised.

copy: boolean, optional

If copy is True, a deep copy of the image (including the data) is made.

composed_with_transform(w2w_transform)

Return a new image embedding the same data in a different word space using the given world to world transform.

Parameters

w2w_transform : transform object

The transform object giving the mapping between the current world space of the image, and the new word space.

Returns

remapped_image : nipy image

An image containing the same data, expressed in the new world space.

get_data()

Return data as a numpy array.

get_world_coords()

Return the data points coordinates in the world space.

Returns

x: ndarray

x coordinates of the data points in world space

y: ndarray

y coordinates of the data points in world space

z: ndarray

z coordinates of the data points in world space

values_in_world(x, y, z, interpolation=None)

Return the values of the data at the world-space positions given by x, y, z

Parameters

x : number or ndarray

x positions in world space, in other words milimeters

y : number or ndarray

y positions in world space, in other words milimeters. The shape of y should match the shape of x

z : number or ndarray

z positions in world space, in other words milimeters. The shape of z should match the shape of x

interpolation : None, ‘continuous’ or ‘nearest’, optional

Interpolation type used when calculating values in different word spaces. If None, the image’s interpolation logic is used.

Returns

values : number or ndarray

Data values interpolated at the given world position. This is a number or an ndarray, depending on the shape of the input coordinate.