algorithms.statistics.models.model¶
Module: algorithms.statistics.models.model
¶
Inheritance diagram for nipy.algorithms.statistics.models.model
:
Classes¶
FContrastResults
¶
-
class
nipy.algorithms.statistics.models.model.
FContrastResults
(effect, covariance, F, df_num, df_den=None)[source]¶ Bases:
object
Results from an F contrast of coefficients in a parametric model.
The class does nothing, it is a container for the results from F contrasts, and returns the F-statistics when np.asarray is called.
LikelihoodModel
¶
-
class
nipy.algorithms.statistics.models.model.
LikelihoodModel
[source]¶ Bases:
nipy.algorithms.statistics.models.model.Model
-
__init__
()¶ Initialize self. See help(type(self)) for accurate signature.
-
score
(theta, Y, nuisance=None)[source]¶ Gradient of logL with respect to theta.
This is the score function of the model
-
information
(theta, nuisance=None)[source]¶ Fisher information matrix
The inverse of the expected value of
- d^2 logL / dtheta^2.
-
fit
()¶ Fit a model to data.
-
initialize
()¶ Initialize (possibly re-initialize) a Model instance.
For instance, the design matrix of a linear model may change and some things must be recomputed.
-
predict
(design=None)¶ After a model has been fit, results are (assumed to be) stored in self.results, which itself should have a predict method.
-
LikelihoodModelResults
¶
-
class
nipy.algorithms.statistics.models.model.
LikelihoodModelResults
(theta, Y, model, cov=None, dispersion=1.0, nuisance=None, rank=None)[source]¶ Bases:
object
Class to contain results from likelihood models
-
__init__
(theta, Y, model, cov=None, dispersion=1.0, nuisance=None, rank=None)[source]¶ Set up results structure
- Parameters
theta : ndarray
parameter estimates from estimated model
Y : ndarray
data
model :
LikelihoodModel
instancemodel used to generate fit
cov : None or ndarray, optional
covariance of thetas
dispersion : scalar, optional
multiplicative factor in front of cov
nuisance : None of ndarray
parameter estimates needed to compute logL
rank : None or scalar
rank of the model. If rank is not None, it is used for df_model instead of the usual counting of parameters.
Notes
The covariance of thetas is given by:
dispersion * cov
For (some subset of models) dispersion will typically be the mean square error from the estimated model (sigma^2)
-
t
(column=None)[source]¶ Return the (Wald) t-statistic for a given parameter estimate.
Use Tcontrast for more complicated (Wald) t-statistics.
-
vcov
(matrix=None, column=None, dispersion=None, other=None)[source]¶ Variance/covariance matrix of linear contrast
- Parameters
matrix: (dim, self.theta.shape[0]) array, optional
numerical contrast specification, where
dim
refers to the ‘dimension’ of the contrast i.e. 1 for t contrasts, 1 or more for F contrasts.column: int, optional
alternative way of specifying contrasts (column index)
dispersion: float or (n_voxels,) array, optional
value(s) for the dispersion parameters
other: (dim, self.theta.shape[0]) array, optional
alternative contrast specification (?)
- Returns
cov: (dim, dim) or (n_voxels, dim, dim) array
the estimated covariance matrix/matrices
Returns the variance/covariance matrix of a linear contrast of the
estimates of theta, multiplied by dispersion which will often be an
estimate of dispersion, like, sigma^2.
The covariance of interest is either specified as a (set of) column(s)
or a matrix.
-
Tcontrast
(matrix, store=('t', 'effect', 'sd'), dispersion=None)[source]¶ Compute a Tcontrast for a row vector matrix
To get the t-statistic for a single column, use the ‘t’ method.
- Parameters
matrix : 1D array-like
contrast matrix
store : sequence, optional
components of t to store in results output object. Defaults to all components (‘t’, ‘effect’, ‘sd’).
dispersion : None or float, optional
- Returns
res :
TContrastResults
object
-
Fcontrast
(matrix, dispersion=None, invcov=None)[source]¶ Compute an Fcontrast for a contrast matrix matrix.
Here, matrix M is assumed to be non-singular. More precisely
\[M pX pX' M'\]is assumed invertible. Here, \(pX\) is the generalized inverse of the design matrix of the model. There can be problems in non-OLS models where the rank of the covariance of the noise is not full.
See the contrast module to see how to specify contrasts. In particular, the matrices from these contrasts will always be non-singular in the sense above.
- Parameters
matrix : 1D array-like
contrast matrix
dispersion : None or float, optional
If None, use
self.dispersion
invcov : None or array, optional
Known inverse of variance covariance matrix. If None, calculate this matrix.
- Returns
f_res :
FContrastResults
instancewith attributes F, df_den, df_num
Notes
For F contrasts, we now specify an effect and covariance
-
conf_int
(alpha=0.05, cols=None, dispersion=None)[source]¶ The confidence interval of the specified theta estimates.
- Parameters
alpha : float, optional
The alpha level for the confidence interval. ie., alpha = .05 returns a 95% confidence interval.
cols : tuple, optional
cols specifies which confidence intervals to return
dispersion : None or scalar
scale factor for the variance / covariance (see class docstring and
vcov
method docstring)- Returns
cis : ndarray
cis is shape
(len(cols), 2)
where each row contains [lower, upper] for the given entry in cols
Notes
Confidence intervals are two-tailed. TODO: tails : string, optional
tails can be “two”, “upper”, or “lower”
Examples
>>> from numpy.random import standard_normal as stan >>> from nipy.algorithms.statistics.models.regression import OLSModel >>> x = np.hstack((stan((30,1)),stan((30,1)),stan((30,1)))) >>> beta=np.array([3.25, 1.5, 7.0]) >>> y = np.dot(x,beta) + stan((30)) >>> model = OLSModel(x).fit(y) >>> confidence_intervals = model.conf_int(cols=(1,2))
-
Model
¶
-
class
nipy.algorithms.statistics.models.model.
Model
[source]¶ Bases:
object
A (predictive) statistical model.
The class Model itself does nothing but lays out the methods expected of any subclass.
TContrastResults
¶
-
class
nipy.algorithms.statistics.models.model.
TContrastResults
(t, sd, effect, df_den=None)[source]¶ Bases:
object
Results from a t contrast of coefficients in a parametric model.
The class does nothing, it is a container for the results from T contrasts, and returns the T-statistics when np.asarray is called.