algorithms.statistics.models.family.links¶
Module: algorithms.statistics.models.family.links
¶
Inheritance diagram for nipy.algorithms.statistics.models.family.links
:
Classes¶
CDFLink
¶
-
class
nipy.algorithms.statistics.models.family.links.
CDFLink
(dbn=<scipy.stats._continuous_distns.norm_gen object>)[source]¶ Bases:
nipy.algorithms.statistics.models.family.links.Logit
The use the CDF of a scipy.stats distribution as a link function:
g(x) = dbn.ppf(x)
-
__init__
(dbn=<scipy.stats._continuous_distns.norm_gen object>)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
inverse
(z)[source]¶ Derivative of CDF link
g(z) = self.dbn.cdf(z)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: p
p – inverse of CDF link of z
-
deriv
(p)[source]¶ Derivative of CDF link
g(p) = 1/self.dbn.pdf(self.dbn.ppf(p))
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of CDF transform of x
-
clean
(p)¶ Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
-
initialize
(Y)¶
-
tol
= 1e-10¶
-
CLogLog
¶
-
class
nipy.algorithms.statistics.models.family.links.
CLogLog
[source]¶ Bases:
nipy.algorithms.statistics.models.family.links.Logit
The complementary log-log transform as a link function:
g(x) = log(-log(x))
-
__init__
($self, /, *args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
inverse
(z)[source]¶ Inverse of C-Log-Log transform
g(z) = exp(-exp(z))
- INPUTS:
z – linear predictor scale
- OUTPUTS: p
p – mean parameters
-
deriv
(p)[source]¶ Derivatve of C-Log-Log transform
g(p) = - 1 / (log(p) * p)
- INPUTS:
p – mean parameters
- OUTPUTS: z
z – - 1 / (log(p) * p)
-
clean
(p)¶ Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
-
initialize
(Y)¶
-
tol
= 1e-10¶
-
Link
¶
Log
¶
-
class
nipy.algorithms.statistics.models.family.links.
Log
[source]¶ Bases:
nipy.algorithms.statistics.models.family.links.Link
The log transform as a link function:
g(x) = log(x)
-
__init__
($self, /, *args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
tol
= 1e-10¶
-
inverse
(z)[source]¶ Inverse of log transform
g(x) = exp(x)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: x
x – exp(z)
-
deriv
(x)[source]¶ Derivative of log transform
g(x) = 1/x
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of log transform of x
-
initialize
(Y)¶
-
Logit
¶
-
class
nipy.algorithms.statistics.models.family.links.
Logit
[source]¶ Bases:
nipy.algorithms.statistics.models.family.links.Link
The logit transform as a link function:
g’(x) = 1 / (x * (1 - x)) g^(-1)(x) = exp(x)/(1 + exp(x))
-
__init__
($self, /, *args, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
-
tol
= 1e-10¶
-
clean
(p)[source]¶ Clip logistic values to range (tol, 1-tol)
- INPUTS:
p – probabilities
- OUTPUTS: pclip
pclip – clipped probabilities
-
inverse
(z)[source]¶ Inverse logit transform
h(z) = exp(z)/(1+exp(z))
- INPUTS:
z – logit transform of p
- OUTPUTS: p
p – probabilities
-
deriv
(p)[source]¶ Derivative of logit transform
g(p) = 1 / (p * (1 - p))
- INPUTS:
p – probabilities
- OUTPUTS: y
y – derivative of logit transform of p
-
initialize
(Y)¶
-
Power
¶
-
class
nipy.algorithms.statistics.models.family.links.
Power
(power=1.0)[source]¶ Bases:
nipy.algorithms.statistics.models.family.links.Link
The power transform as a link function:
g(x) = x**power
-
inverse
(z)[source]¶ Inverse of power transform
g(x) = x**(1/self.power)
- INPUTS:
z – linear predictors in GLM
- OUTPUTS: x
x – mean parameters
-
deriv
(x)[source]¶ Derivative of power transform
g(x) = self.power * x**(self.power - 1)
- INPUTS:
x – mean parameters
- OUTPUTS: z
z – derivative of power transform of x
-
initialize
(Y)¶
-