algorithms.registration.histogram_registration¶
Module: algorithms.registration.histogram_registration
¶
Inheritance diagram for nipy.algorithms.registration.histogram_registration
:
Intensity-based image registration
Class¶
HistogramRegistration
¶
-
class
nipy.algorithms.registration.histogram_registration.
HistogramRegistration
(from_img, to_img, from_bins=256, to_bins=None, from_mask=None, to_mask=None, similarity='crl1', interp='pv', smooth=0, renormalize=False, dist=None)[source]¶ Bases:
object
A class to reprensent a generic intensity-based image registration algorithm.
-
__init__
(from_img, to_img, from_bins=256, to_bins=None, from_mask=None, to_mask=None, similarity='crl1', interp='pv', smooth=0, renormalize=False, dist=None)[source]¶ Creates a new histogram registration object.
- Parameters
from_img : nipy-like image
From image
- to_imgnipy-like image
To image
- from_binsinteger
Number of histogram bins to represent the from image
- to_binsinteger
Number of histogram bins to represent the to image
- from_maskarray-like
Mask to apply to the from image
- to_maskarray-like
Mask to apply to the to image
- similaritystr or callable
Cost-function for assessing image similarity. If a string, one of ‘cc’: correlation coefficient, ‘cr’: correlation ratio, ‘crl1’: L1-norm based correlation ratio, ‘mi’: mutual information, ‘nmi’: normalized mutual information, ‘slr’: supervised log-likelihood ratio. If a callable, it should take a two-dimensional array representing the image joint histogram as an input and return a float.
dist: None or array-like
Joint intensity probability distribution model for use with the ‘slr’ measure. Should be of shape (from_bins, to_bins).
interp : str
Interpolation method. One of ‘pv’: Partial volume, ‘tri’: Trilinear, ‘rand’: Random interpolation. See
joint_histogram.c
smooth : float
Standard deviation in millimeters of an isotropic Gaussian kernel used to smooth the To image. If 0, no smoothing is applied.
-
property
interp
¶
-
set_fov
(spacing=None, corner=(0, 0, 0), size=None, npoints=None)[source]¶ Defines a subset of the from image to restrict joint histogram computation.
- Parameters
spacing : sequence (3,) of positive integers
Subsampling of image in voxels, where None (default) results in the subsampling to be automatically adjusted to roughly match a cubic grid with npoints voxels
corner : sequence (3,) of positive integers
Bounding box origin in voxel coordinates
size : sequence (3,) of positive integers
Desired bounding box size
npoints : positive integer
Desired number of voxels in the bounding box. If a spacing argument is provided, then npoints is ignored.
-
property
similarity
¶
-
eval
(T)[source]¶ Evaluate similarity function given a world-to-world transform.
- Parameters
T : Transform
Transform object implementing
apply
method
-
eval_gradient
(T, epsilon=0.1)[source]¶ Evaluate the gradient of the similarity function wrt transformation parameters.
The gradient is approximated using central finite differences at the transformation specified by T. The input transformation object T is modified in place unless it has a
copy
method.- Parameters
T : Transform
Transform object implementing
apply
methodepsilon : float
Step size for finite differences in units of the transformation parameters
- Returns
g : ndarray
Similarity gradient estimate
-
eval_hessian
(T, epsilon=0.1, diag=False)[source]¶ Evaluate the Hessian of the similarity function wrt transformation parameters.
The Hessian or its diagonal is approximated at the transformation specified by T using central finite differences. The input transformation object T is modified in place unless it has a
copy
method.- Parameters
T : Transform
Transform object implementing
apply
methodepsilon : float
Step size for finite differences in units of the transformation parameters
diag : bool
If True, approximate the Hessian by a diagonal matrix.
- Returns
H : ndarray
Similarity Hessian matrix estimate
-
optimize
(T, optimizer='powell', **kwargs)[source]¶ Optimize transform T with respect to similarity measure.
The input object T will change as a result of the optimization.
- Parameters
T : object or str
An object representing a transformation that should implement
apply
method andparam
attribute or property. If a string, one of ‘rigid’, ‘similarity’, or ‘affine’. The corresponding transformation class is then initialized by default.optimizer : str
Name of optimization function (one of ‘powell’, ‘steepest’, ‘cg’, ‘bfgs’, ‘simplex’)
**kwargs : dict
keyword arguments to pass to optimizer
- Returns
T : object
Locally optimal transformation
-
explore
(T, *args)[source]¶ Evaluate the similarity at the transformations specified by sequences of parameter values.
For instance:
s, p = explore(T, (0, [-1,0,1]), (4, [-2.,2]))
- Parameters
T : object
Transformation around which the similarity function is to be evaluated. It is modified in place unless it has a
copy
method.args : tuple
Each element of args is a sequence of two elements, where the first element specifies a transformation parameter axis and the second element gives the successive parameter values to evaluate along that axis.
- Returns
s : ndarray
Array of similarity values
p : ndarray
Corresponding array of evaluated transformation parameters
-
Functions¶
-
nipy.algorithms.registration.histogram_registration.
approx_gradient
(f, x, epsilon)[source]¶ Approximate the gradient of a function using central finite differences
- Parameters
f: callable
The function to differentiate
x: ndarray
Point where the function gradient is to be evaluated
epsilon: float
Stepsize for finite differences
- Returns
g: ndarray
Function gradient at x
-
nipy.algorithms.registration.histogram_registration.
approx_hessian
(f, x, epsilon)[source]¶ Approximate the full Hessian matrix of a function using central finite differences
- Parameters
f: callable
The function to differentiate
x: ndarray
Point where the Hessian is to be evaluated
epsilon: float
Stepsize for finite differences
- Returns
H: ndarray
Hessian matrix at x
-
nipy.algorithms.registration.histogram_registration.
approx_hessian_diag
(f, x, epsilon)[source]¶ Approximate the Hessian diagonal of a function using central finite differences
- Parameters
f: callable
The function to differentiate
x: ndarray
Point where the Hessian is to be evaluated
epsilon: float
Stepsize for finite differences
- Returns
h: ndarray
Diagonal of the Hessian at x
-
nipy.algorithms.registration.histogram_registration.
clamp
(x, bins, mask=None)[source]¶ Clamp array values that fall within a given mask in the range [0..bins-1] and reset masked values to -1.
- Parameters
x : ndarray
The input array
bins : number
Desired number of bins
mask : ndarray, tuple or slice
Anything such that x[mask] is an array.
- Returns
y : ndarray
Clamped array, masked items are assigned -1
bins : number
Adjusted number of bins
-
nipy.algorithms.registration.histogram_registration.
ideal_spacing
(data, npoints)[source]¶ Tune spacing factors so that the number of voxels in the output block matches a given number.
- Parameters
data : ndarray or sequence
Data image to subsample
npoints : number
Target number of voxels (negative values will be ignored)
- Returns
spacing: ndarray
Spacing factors
-
nipy.algorithms.registration.histogram_registration.
smallest_bounding_box
(msk)[source]¶ Extract the smallest bounding box from a mask
- Parameters
msk : ndarray
Array of boolean
- Returns
corner: ndarray
3-dimensional coordinates of bounding box corner
size: ndarray
3-dimensional size of bounding box
-
nipy.algorithms.registration.histogram_registration.
smooth_image
(data, affine, sigma)[source]¶ Smooth an image by an isotropic Gaussian filter
- Parameters
data: ndarray
Image data array
affine: ndarray
Image affine transform
sigma: float
Filter standard deviation in mm
- Returns
sdata: ndarray
Smoothed data array