algorithms.clustering.imm¶
Module: algorithms.clustering.imm
¶
Inheritance diagram for nipy.algorithms.clustering.imm
:
Infinite mixture model : A generalization of Bayesian mixture models with an unspecified number of classes
Classes¶
IMM
¶
-
class
nipy.algorithms.clustering.imm.
IMM
(alpha=0.5, dim=1)[source]¶ Bases:
nipy.algorithms.clustering.bgmm.BGMM
The class implements Infinite Gaussian Mixture model or Dirichlet Proces Mixture Model. This simply a generalization of Bayesian Gaussian Mixture Models with an unknown number of classes.
-
__init__
(alpha=0.5, dim=1)[source]¶ - Parameters
alpha: float, optional,
the parameter for cluster creation
dim: int, optional,
the dimension of the the data
Note: use the function set_priors() to set adapted priors
-
set_priors
(x)[source]¶ Set the priors in order of having them weakly uninformative this is from Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x, array of shape (n_samples,self.dim)
the data used in the estimation process
-
set_constant_densities
(prior_dens=None)[source]¶ Set the null and prior densities as constant (assuming a compact domain)
- Parameters
prior_dens: float, optional
constant for the prior density
-
sample
(x, niter=1, sampling_points=None, init=False, kfold=None, verbose=0)[source]¶ sample the indicator and parameters
- Parameters
x: array of shape (n_samples, self.dim)
the data used in the estimation process
niter: int,
the number of iterations to perform
sampling_points: array of shape(nbpoints, self.dim), optional
points where the likelihood will be sampled this defaults to x
kfold: int or array, optional,
parameter of cross-validation control by default, no cross-validation is used the procedure is faster but less accurate
verbose=0: verbosity mode
- Returns
likelihood: array of shape(nbpoints)
total likelihood of the model
-
simple_update
(x, z, plike)[source]¶ This is a step in the sampling procedure
that uses internal corss_validation
- Parameters
x: array of shape(n_samples, dim),
the input data
z: array of shape(n_samples),
the associated membership variables
plike: array of shape(n_samples),
the likelihood under the prior
- Returns
like: array od shape(n_samples),
the likelihood of the data
-
cross_validated_update
(x, z, plike, kfold=10)[source]¶ This is a step in the sampling procedure that uses internal corss_validation
- Parameters
x: array of shape(n_samples, dim),
the input data
z: array of shape(n_samples),
the associated membership variables
plike: array of shape(n_samples),
the likelihood under the prior
kfold: int, or array of shape(n_samples), optional,
folds in the cross-validation loop
- Returns
like: array od shape(n_samples),
the (cross-validated) likelihood of the data
-
reduce
(z)[source]¶ Reduce the assignments by removing empty clusters and update self.k
- Parameters
z: array of shape(n),
a vector of membership variables changed in place
- Returns
z: the remapped values
-
update
(x, z)[source]¶ Update function (draw a sample of the IMM parameters)
- Parameters
x array of shape (n_samples,self.dim)
the data used in the estimation process
z array of shape (n_samples), type = np.int
the corresponding classification
-
update_weights
(z)[source]¶ Given the allocation vector z, resmaple the weights parameter
- Parameters
z array of shape (n_samples), type = np.int
the allocation variable
-
sample_indicator
(like)[source]¶ Sample the indicator from the likelihood
- Parameters
like: array of shape (nbitem,self.k)
component-wise likelihood
- Returns
z: array of shape(nbitem): a draw of the membership variable
Notes
The behaviour is different from standard bgmm in that z can take arbitrary values
-
likelihood_under_the_prior
(x)[source]¶ Computes the likelihood of x under the prior
- Parameters
x, array of shape (self.n_samples,self.dim)
- Returns
w, the likelihood of x under the prior model (unweighted)
-
likelihood
(x, plike=None)[source]¶ return the likelihood of the model for the data x the values are weighted by the components weights
- Parameters
x: array of shape (n_samples, self.dim),
the data used in the estimation process
plike: array os shape (n_samples), optional,x
the desnity of each point under the prior
- Returns
like, array of shape(nbitem,self.k)
component-wise likelihood
-
average_log_like
(x, tiny=1e-15)¶ returns the averaged log-likelihood of the mode for the dataset x
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
tiny = 1.e-15: a small constant to avoid numerical singularities
-
bayes_factor
(x, z, nperm=0, verbose=0)¶ Evaluate the Bayes Factor of the current model using Chib’s method
- Parameters
x: array of shape (nb_samples,dim)
the data from which bic is computed
z: array of shape (nb_samples), type = np.int
the corresponding classification
nperm=0: int
the number of permutations to sample to model the label switching issue in the computation of the Bayes Factor By default, exhaustive permutations are used
verbose=0: verbosity mode
- Returns
bf (float) the computed evidence (Bayes factor)
Notes
See: Marginal Likelihood from the Gibbs Output Journal article by Siddhartha Chib; Journal of the American Statistical Association, Vol. 90, 1995
-
bic
(like, tiny=1e-15)¶ Computation of bic approximation of evidence
- Parameters
like, array of shape (n_samples, self.k)
component-wise likelihood
tiny=1.e-15, a small constant to avoid numerical singularities
- Returns
the bic value, float
-
check
()¶ Checking the shape of sifferent matrices involved in the model
-
check_x
(x)¶ essentially check that x.shape[1]==self.dim
x is returned with possibly reshaping
-
conditional_posterior_proba
(x, z, perm=None)¶ Compute the probability of the current parameters of self given x and z
- Parameters
x: array of shape (nb_samples, dim),
the data from which bic is computed
z: array of shape (nb_samples), type = np.int,
the corresponding classification
perm: array ok shape(nperm, self.k),typ=np.int, optional
all permutation of z under which things will be recomputed By default, no permutation is performed
-
estimate
(x, niter=100, delta=0.0001, verbose=0)¶ Estimation of the model given a dataset x
- Parameters
x array of shape (n_samples,dim)
the data from which the model is estimated
niter=100: maximal number of iterations in the estimation process
delta = 1.e-4: increment of data likelihood at which
convergence is declared
verbose=0: verbosity mode
- Returns
bic : an asymptotic approximation of model evidence
-
evidence
(x, z, nperm=0, verbose=0)¶ See bayes_factor(self, x, z, nperm=0, verbose=0)
-
guess_priors
(x, nocheck=0)¶ Set the priors in order of having them weakly uninformative this is from Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x, array of shape (nb_samples,self.dim)
the data used in the estimation process
nocheck: boolean, optional,
if nocheck==True, check is skipped
-
guess_regularizing
(x, bcheck=1)¶ Set the regularizing priors as weakly informative according to Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x array of shape (n_samples,dim)
the data used in the estimation process
-
initialize
(x)¶ initialize z using a k-means algorithm, then upate the parameters
- Parameters
x: array of shape (nb_samples,self.dim)
the data used in the estimation process
-
initialize_and_estimate
(x, z=None, niter=100, delta=0.0001, ninit=1, verbose=0)¶ Estimation of self given x
- Parameters
x array of shape (n_samples,dim)
the data from which the model is estimated
z = None: array of shape (n_samples)
a prior labelling of the data to initialize the computation
niter=100: maximal number of iterations in the estimation process
delta = 1.e-4: increment of data likelihood at which
convergence is declared
ninit=1: number of initialization performed
to reach a good solution
verbose=0: verbosity mode
- Returns
the best model is returned
-
map_label
(x, like=None)¶ return the MAP labelling of x
- Parameters
x array of shape (n_samples,dim)
the data under study
like=None array of shape(n_samples,self.k)
component-wise likelihood if like==None, it is recomputed
- Returns
z: array of shape(n_samples): the resulting MAP labelling
of the rows of x
-
mixture_likelihood
(x)¶ Returns the likelihood of the mixture for x
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
-
plugin
(means, precisions, weights)¶ Set manually the weights, means and precision of the model
- Parameters
means: array of shape (self.k,self.dim)
precisions: array of shape (self.k,self.dim,self.dim)
or (self.k, self.dim)
weights: array of shape (self.k)
-
pop
(z)¶ compute the population, i.e. the statistics of allocation
- Parameters
z array of shape (nb_samples), type = np.int
the allocation variable
- Returns
hist : array shape (self.k) count variable
-
probability_under_prior
()¶ Compute the probability of the current parameters of self given the priors
-
sample_and_average
(x, niter=1, verbose=0)¶ sample the indicator and parameters the average values for weights,means, precisions are returned
- Parameters
x = array of shape (nb_samples,dim)
the data from which bic is computed
niter=1: number of iterations
- Returns
weights: array of shape (self.k)
means: array of shape (self.k,self.dim)
precisions: array of shape (self.k,self.dim,self.dim)
or (self.k, self.dim) these are the average parameters across samplings
Notes
All this makes sense only if no label switching as occurred so this is wrong in general (asymptotically).
fix: implement a permutation procedure for components identification
-
show
(x, gd, density=None, axes=None)¶ Function to plot a GMM, still in progress Currently, works only in 1D and 2D
- Parameters
x: array of shape(n_samples, dim)
the data under study
gd: GridDescriptor instance
density: array os shape(prod(gd.n_bins))
density of the model one the discrete grid implied by gd by default, this is recomputed
-
show_components
(x, gd, density=None, mpaxes=None)¶ Function to plot a GMM – Currently, works only in 1D
- Parameters
x: array of shape(n_samples, dim)
the data under study
gd: GridDescriptor instance
density: array os shape(prod(gd.n_bins))
density of the model one the discrete grid implied by gd by default, this is recomputed
mpaxes: axes handle to make the figure, optional,
if None, a new figure is created
-
test
(x, tiny=1e-15)¶ Returns the log-likelihood of the mixture for x
- Parameters
x array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
ll: array of shape(n_samples)
the log-likelihood of the rows of x
-
train
(x, z=None, niter=100, delta=0.0001, ninit=1, verbose=0)¶ Idem initialize_and_estimate
-
unweighted_likelihood
(x)¶ return the likelihood of each data for each component the values are not weighted by the component weights
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
like, array of shape(n_samples,self.k)
unweighted component-wise likelihood
Notes
Hopefully faster
-
unweighted_likelihood_
(x)¶ return the likelihood of each data for each component the values are not weighted by the component weights
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
like, array of shape(n_samples,self.k)
unweighted component-wise likelihood
-
update_means
(x, z)¶ Given the allocation vector z, and the corresponding data x, resample the mean
- Parameters
x: array of shape (nb_samples,self.dim)
the data used in the estimation process
z: array of shape (nb_samples), type = np.int
the corresponding classification
-
update_precisions
(x, z)¶ Given the allocation vector z, and the corresponding data x, resample the precisions
- Parameters
x array of shape (nb_samples,self.dim)
the data used in the estimation process
z array of shape (nb_samples), type = np.int
the corresponding classification
-
MixedIMM
¶
-
class
nipy.algorithms.clustering.imm.
MixedIMM
(alpha=0.5, dim=1)[source]¶ Bases:
nipy.algorithms.clustering.imm.IMM
Particular IMM with an additional null class. The data is supplied together with a sample-related probability of being under the null.
-
__init__
(alpha=0.5, dim=1)[source]¶ - Parameters
alpha: float, optional,
the parameter for cluster creation
dim: int, optional,
the dimension of the the data
Note: use the function set_priors() to set adapted priors
-
set_constant_densities
(null_dens=None, prior_dens=None)[source]¶ Set the null and prior densities as constant (over a supposedly compact domain)
- Parameters
null_dens: float, optional
constant for the null density
prior_dens: float, optional
constant for the prior density
-
sample
(x, null_class_proba, niter=1, sampling_points=None, init=False, kfold=None, co_clustering=False, verbose=0)[source]¶ sample the indicator and parameters
- Parameters
x: array of shape (n_samples, self.dim),
the data used in the estimation process
null_class_proba: array of shape(n_samples),
the probability to be under the null
niter: int,
the number of iterations to perform
sampling_points: array of shape(nbpoints, self.dim), optional
points where the likelihood will be sampled this defaults to x
kfold: int, optional,
parameter of cross-validation control by default, no cross-validation is used the procedure is faster but less accurate
co_clustering: bool, optional
if True, return a model of data co-labelling across iterations
verbose=0: verbosity mode
- Returns
likelihood: array of shape(nbpoints)
total likelihood of the model
pproba: array of shape(n_samples),
the posterior of being in the null (the posterior of null_class_proba)
coclust: only if co_clustering==True,
sparse_matrix of shape (n_samples, n_samples), frequency of co-labelling of each sample pairs across iterations
-
simple_update
(x, z, plike, null_class_proba)[source]¶ One step in the sampling procedure (one data sweep)
- Parameters
x: array of shape(n_samples, dim),
the input data
z: array of shape(n_samples),
the associated membership variables
plike: array of shape(n_samples),
the likelihood under the prior
null_class_proba: array of shape(n_samples),
prior probability to be under the null
- Returns
like: array od shape(n_samples),
the likelihood of the data under the H1 hypothesis
-
cross_validated_update
(x, z, plike, null_class_proba, kfold=10)[source]¶ This is a step in the sampling procedure that uses internal corss_validation
- Parameters
x: array of shape(n_samples, dim),
the input data
z: array of shape(n_samples),
the associated membership variables
plike: array of shape(n_samples),
the likelihood under the prior
kfold: int, optional, or array
number of folds in cross-validation loop or set of indexes for the cross-validation procedure
null_class_proba: array of shape(n_samples),
prior probability to be under the null
- Returns
like: array od shape(n_samples),
the (cross-validated) likelihood of the data
z: array of shape(n_samples),
the associated membership variables
Notes
When kfold is an array, there is an internal reshuffling to randomize the order of updates
-
sample_indicator
(like, null_class_proba)[source]¶ sample the indicator from the likelihood
- Parameters
like: array of shape (nbitem,self.k)
component-wise likelihood
null_class_proba: array of shape(n_samples),
prior probability to be under the null
- Returns
z: array of shape(nbitem): a draw of the membership variable
Notes
Here z=-1 encodes for the null class
-
average_log_like
(x, tiny=1e-15)¶ returns the averaged log-likelihood of the mode for the dataset x
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
tiny = 1.e-15: a small constant to avoid numerical singularities
-
bayes_factor
(x, z, nperm=0, verbose=0)¶ Evaluate the Bayes Factor of the current model using Chib’s method
- Parameters
x: array of shape (nb_samples,dim)
the data from which bic is computed
z: array of shape (nb_samples), type = np.int
the corresponding classification
nperm=0: int
the number of permutations to sample to model the label switching issue in the computation of the Bayes Factor By default, exhaustive permutations are used
verbose=0: verbosity mode
- Returns
bf (float) the computed evidence (Bayes factor)
Notes
See: Marginal Likelihood from the Gibbs Output Journal article by Siddhartha Chib; Journal of the American Statistical Association, Vol. 90, 1995
-
bic
(like, tiny=1e-15)¶ Computation of bic approximation of evidence
- Parameters
like, array of shape (n_samples, self.k)
component-wise likelihood
tiny=1.e-15, a small constant to avoid numerical singularities
- Returns
the bic value, float
-
check
()¶ Checking the shape of sifferent matrices involved in the model
-
check_x
(x)¶ essentially check that x.shape[1]==self.dim
x is returned with possibly reshaping
-
conditional_posterior_proba
(x, z, perm=None)¶ Compute the probability of the current parameters of self given x and z
- Parameters
x: array of shape (nb_samples, dim),
the data from which bic is computed
z: array of shape (nb_samples), type = np.int,
the corresponding classification
perm: array ok shape(nperm, self.k),typ=np.int, optional
all permutation of z under which things will be recomputed By default, no permutation is performed
-
estimate
(x, niter=100, delta=0.0001, verbose=0)¶ Estimation of the model given a dataset x
- Parameters
x array of shape (n_samples,dim)
the data from which the model is estimated
niter=100: maximal number of iterations in the estimation process
delta = 1.e-4: increment of data likelihood at which
convergence is declared
verbose=0: verbosity mode
- Returns
bic : an asymptotic approximation of model evidence
-
evidence
(x, z, nperm=0, verbose=0)¶ See bayes_factor(self, x, z, nperm=0, verbose=0)
-
guess_priors
(x, nocheck=0)¶ Set the priors in order of having them weakly uninformative this is from Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x, array of shape (nb_samples,self.dim)
the data used in the estimation process
nocheck: boolean, optional,
if nocheck==True, check is skipped
-
guess_regularizing
(x, bcheck=1)¶ Set the regularizing priors as weakly informative according to Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x array of shape (n_samples,dim)
the data used in the estimation process
-
initialize
(x)¶ initialize z using a k-means algorithm, then upate the parameters
- Parameters
x: array of shape (nb_samples,self.dim)
the data used in the estimation process
-
initialize_and_estimate
(x, z=None, niter=100, delta=0.0001, ninit=1, verbose=0)¶ Estimation of self given x
- Parameters
x array of shape (n_samples,dim)
the data from which the model is estimated
z = None: array of shape (n_samples)
a prior labelling of the data to initialize the computation
niter=100: maximal number of iterations in the estimation process
delta = 1.e-4: increment of data likelihood at which
convergence is declared
ninit=1: number of initialization performed
to reach a good solution
verbose=0: verbosity mode
- Returns
the best model is returned
-
likelihood
(x, plike=None)¶ return the likelihood of the model for the data x the values are weighted by the components weights
- Parameters
x: array of shape (n_samples, self.dim),
the data used in the estimation process
plike: array os shape (n_samples), optional,x
the desnity of each point under the prior
- Returns
like, array of shape(nbitem,self.k)
component-wise likelihood
-
likelihood_under_the_prior
(x)¶ Computes the likelihood of x under the prior
- Parameters
x, array of shape (self.n_samples,self.dim)
- Returns
w, the likelihood of x under the prior model (unweighted)
-
map_label
(x, like=None)¶ return the MAP labelling of x
- Parameters
x array of shape (n_samples,dim)
the data under study
like=None array of shape(n_samples,self.k)
component-wise likelihood if like==None, it is recomputed
- Returns
z: array of shape(n_samples): the resulting MAP labelling
of the rows of x
-
mixture_likelihood
(x)¶ Returns the likelihood of the mixture for x
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
-
plugin
(means, precisions, weights)¶ Set manually the weights, means and precision of the model
- Parameters
means: array of shape (self.k,self.dim)
precisions: array of shape (self.k,self.dim,self.dim)
or (self.k, self.dim)
weights: array of shape (self.k)
-
pop
(z)¶ compute the population, i.e. the statistics of allocation
- Parameters
z array of shape (nb_samples), type = np.int
the allocation variable
- Returns
hist : array shape (self.k) count variable
-
probability_under_prior
()¶ Compute the probability of the current parameters of self given the priors
-
reduce
(z)¶ Reduce the assignments by removing empty clusters and update self.k
- Parameters
z: array of shape(n),
a vector of membership variables changed in place
- Returns
z: the remapped values
-
sample_and_average
(x, niter=1, verbose=0)¶ sample the indicator and parameters the average values for weights,means, precisions are returned
- Parameters
x = array of shape (nb_samples,dim)
the data from which bic is computed
niter=1: number of iterations
- Returns
weights: array of shape (self.k)
means: array of shape (self.k,self.dim)
precisions: array of shape (self.k,self.dim,self.dim)
or (self.k, self.dim) these are the average parameters across samplings
Notes
All this makes sense only if no label switching as occurred so this is wrong in general (asymptotically).
fix: implement a permutation procedure for components identification
-
set_priors
(x)¶ Set the priors in order of having them weakly uninformative this is from Fraley and raftery; Journal of Classification 24:155-181 (2007)
- Parameters
x, array of shape (n_samples,self.dim)
the data used in the estimation process
-
show
(x, gd, density=None, axes=None)¶ Function to plot a GMM, still in progress Currently, works only in 1D and 2D
- Parameters
x: array of shape(n_samples, dim)
the data under study
gd: GridDescriptor instance
density: array os shape(prod(gd.n_bins))
density of the model one the discrete grid implied by gd by default, this is recomputed
-
show_components
(x, gd, density=None, mpaxes=None)¶ Function to plot a GMM – Currently, works only in 1D
- Parameters
x: array of shape(n_samples, dim)
the data under study
gd: GridDescriptor instance
density: array os shape(prod(gd.n_bins))
density of the model one the discrete grid implied by gd by default, this is recomputed
mpaxes: axes handle to make the figure, optional,
if None, a new figure is created
-
test
(x, tiny=1e-15)¶ Returns the log-likelihood of the mixture for x
- Parameters
x array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
ll: array of shape(n_samples)
the log-likelihood of the rows of x
-
train
(x, z=None, niter=100, delta=0.0001, ninit=1, verbose=0)¶ Idem initialize_and_estimate
-
unweighted_likelihood
(x)¶ return the likelihood of each data for each component the values are not weighted by the component weights
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
like, array of shape(n_samples,self.k)
unweighted component-wise likelihood
Notes
Hopefully faster
-
unweighted_likelihood_
(x)¶ return the likelihood of each data for each component the values are not weighted by the component weights
- Parameters
x: array of shape (n_samples,self.dim)
the data used in the estimation process
- Returns
like, array of shape(n_samples,self.k)
unweighted component-wise likelihood
-
update
(x, z)¶ Update function (draw a sample of the IMM parameters)
- Parameters
x array of shape (n_samples,self.dim)
the data used in the estimation process
z array of shape (n_samples), type = np.int
the corresponding classification
-
update_means
(x, z)¶ Given the allocation vector z, and the corresponding data x, resample the mean
- Parameters
x: array of shape (nb_samples,self.dim)
the data used in the estimation process
z: array of shape (nb_samples), type = np.int
the corresponding classification
-
update_precisions
(x, z)¶ Given the allocation vector z, and the corresponding data x, resample the precisions
- Parameters
x array of shape (nb_samples,self.dim)
the data used in the estimation process
z array of shape (nb_samples), type = np.int
the corresponding classification
-
update_weights
(z)¶ Given the allocation vector z, resmaple the weights parameter
- Parameters
z array of shape (n_samples), type = np.int
the allocation variable
-
Functions¶
-
nipy.algorithms.clustering.imm.
co_labelling
(z, kmax=None, kmin=None)[source]¶ return a sparse co-labelling matrix given the label vector z
- Parameters
z: array of shape(n_samples),
the input labels
kmax: int, optional,
considers only the labels in the range [0, kmax[
- Returns
colabel: a sparse coo_matrix,
yields the co labelling of the data i.e. c[i,j]= 1 if z[i]==z[j], 0 otherwise